Sie sind hier: Startseite » Markt » Tipps und Hinweise

Cloud Analytics: Auf diese Dinge achten


Private, Public oder Hybrid Cloud: Wenn Sie eine Migration in die Cloud erwägen, sollten Sie nicht mit den technologischen Anforderungen starten
Wie kann man die Cloud optimal in das eigene Analytics-Ökosystem integrieren?



Von Brian Wood, Director of Cloud Marketing bei Teradata

Sicherlich haben Sie sich als IT-Entscheider diese Fragen schon mal gestellt: Wie lässt sich das Potential der Cloud für Data Analytics am besten ausschöpfen? Wie kann man die Cloud optimal in das eigene Analytics-Ökosystem integrieren? Wie sieht überhaupt eine gute Cloud Analytics-Lösung aus? Und sicherlich haben Sie und Ihr Team festgestellt: Auf diese Fragen gibt es keine einfachen "One-Size-Fits-All"-Antworten. Dennoch können Sie einige wesentliche Schritte, Faktoren und Tipps beachten, damit Analytics mithilfe der Cloud in Ihrem Unternehmen zum Erfolg wird.

Proof of Concept: Auf die Größe kommt es an
So wie Quantität eine eigene Qualität hat, so muss auch die Planung für die Cloud-Migration von lokalen kleinen, übersichtlichen bzw. Greenfield-Systemen eine andere sein als für große, historisch gewachsene, komplexere Systeme. Ein Proof of Concept (POC) für Analytics einer kleinen Umgebung lässt sich zwangsläufig nicht auf eine große, geschäftskritische Umgebung mit einer erheblichen Menge an Daten, Anwendungen und tausenden von Nutzern weltweit adaptieren und skalieren. Dies ist sicherlich eine Tatsache und Lektion, die vielen IT-Entscheidern aus eigener Erfahrung bekannt ist.

IT-Strategie: Geschäftsziele haben Vorrang
Wenn Sie eine Migration in die Cloud erwägen – egal ob Private, Public oder Hybrid Cloud – sollten Sie nicht mit den technologischen Anforderungen starten. Besser ist es, sich im ersten Schritt auf die geschäftlichen Anforderungen und Ziele zu konzentrieren. Sicherheitsmaßnahmen sollten Sie gleich am Anfang definieren und implementieren – oder sinnvolle Kompromisse machen, wenn nötig. Im zweiten Schritt entscheiden Sie sich für die notwendige Architektur, Lösungen und Tools. Wenn Sie nicht von Anfang durch die Business-Brille sehen und die Unternehmensziele bei der Cloud-Migration nicht im Blick haben, dann kann dies in teuren, kurzlebigen IT-Projekten enden.

Cloud-Analytics-Lösung: Übersicht der wichtigsten Funktionen
Verfolgen Sie eine effektive und langfristige IT-Strategie, dann sollte eine Cloud-Analytics-Lösung über die folgenden Eigenschaften verfügen:

1. Nahtlose Integration in bestehende (meist lokale) Infrastrukturen und Anwendungen.
2. Integration in First-Party Cloud Services, inklusive kostengünstigem Object Storage.
3. Kein Vendor Lock-In, das an einen Hersteller bindet und Flexibilität verhindert.
4. Einheitliche User Experience bei Tools, Sprachen und Prozessen, mit denen der Nutzer optimalerweise bereits vertraut ist. Dies steigert die Produktivität und schafft ein ganzheitliches Ökosystem statt einzelner Data Analytics-Silos.
5. Nutzerspezifischer Zugriff anstelle eines mandantenfähigen, gemeinsam genutzten Systems. Dies erleichtert die Bedienung, Steuerung und Prüfung aller Systeme als geschlossene Einheit.
6. Modernes Workflow Management, das es Nutzern und Administratoren ermöglicht, Leistung und Kosten zu verwalten – und entweder automatisch oder manuell anzupassen.

Mit Experten im Boot Fehler vermeiden
Holen Sie sich für den schnellsten Weg zur passenden Cloud-Lösung am besten einen erfahrenen Partner an Ihre Seite, der Sie bei Ihren Plänen beraten und so Ihr Investitionsrisiko verringern kann. Schließlich können Sie am besten von vornherein eigene Fehler vermeiden, indem Sie aus den Erfahrungen anderer lernen. (Teradata: ra)

eingetragen: 04.03.20
Newsletterlauf: 05.05.20

Teradata: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Was Unternehmen beachten müssen

    Künstliche Intelligenz gehört für immer mehr Unternehmen ganz selbstverständlich zum Geschäftsalltag dazu. Insbesondere die generative KI (GenAI) erlebt einen Boom, den sich viele so nicht vorstellen konnten. GenAI-Modelle sind jedoch enorm ressourcenhungrig, sodass sich Firmen Gedanken über die Infrastruktur machen müssen. NTT DATA, ein weltweit führender Anbieter von digitalen Business- und Technologie-Services, zeigt, warum die Cloud der Gamechanger für generative KI ist.

  • SAP mit umfassender Cloud-Strategie

    Für die digitale Transformation von Unternehmen setzt SAP auf eine umfassende Cloud-Strategie. Hier bietet SAP verschiedene Lösungen an. Neben der SAP Public Cloud, die sehr stark auf den SME-Markt zielt, bedient die Industry Cloud als Kombination aus Private Cloud und industriespezifischen Cloud-Lösungen eher den LE-Markt.

  • Warum steigende IT-Kosten das kleinere Übel sind

    Es gibt Zeiten, in denen sind CIOs wirklich nicht zu beneiden. Zum Beispiel dann, wenn sie der Unternehmensführung wieder einmal erklären müssen, warum erneut höhere Investitionen in die IT nötig sind. Eines der größten Paradoxe dabei: Kosten steigen auf dem Papier auch dann, wenn eigentlich aus Kostengründen modernisiert wird. Der Umstieg vom eigenen Server im Keller in die Cloud? Mehrkosten. Neue SaaS-Lösungen?

  • Optimierung von Java-Workloads in der Cloud

    Cloud-Infrastrukturen versprechen Skalierbarkeit, Effizienz und Kostenvorteile. Doch um Engpässe zu vermeiden, überprovisionieren viele Unternehmen ihre Cloud-Kapazitäten - und bezahlen so oftmals für Ressourcen, die sie gar nicht nutzen. Wie lässt sich das ändern? Ein zentraler Hebel ist die Optimierung von Java-Workloads in der Cloud. Cloud-Infrastrukturen bringen viele Vorteile, aber auch neue Komplexität und oft unerwartet hohe Kosten mit sich. Bei vielen Unternehmen nehmen Java-Umgebungen und -Anwendungen große Volumina in gebuchten Cloud-Kapazitäten ein, denn Java gehört noch immer zu den beliebtesten Programmiersprachen: Laut dem aktuellen State of Java Survey and Report 2025 von Azul geben 68 Prozent der Befragten an, dass über 50 Prozent ihrer Anwendungen mit Java entwickelt wurden oder auf einer JVM (Java Virtual Machine) laufen.

  • Wer Cloud sagt, muss Datensouveränität denken

    Die Cloud hat sich längst zu einem neuen IT-Standard entwickelt. Ihr Einsatz bringt allerdings neue Herausforderungen mit sich - insbesondere im Hinblick auf geopolitische Risiken und die Gefahr einseitiger Abhängigkeiten. Klar ist: Unternehmen, Behörden und Betreiber kritischer Infrastrukturen benötigen eine kompromisslose Datensouveränität. Materna Virtual Solution zeigt, welche zentralen Komponenten dabei entscheidend sind.

  • Fünf Mythen über Managed Services

    Managed Services sind ein Erfolgsmodell. Trotzdem existieren nach wie vor einige Vorbehalte gegenüber externen IT-Services. Die IT-Dienstleisterin CGI beschreibt die fünf hartnäckigsten Mythen und erklärt, warum diese längst überholt sind.

  • KI-Herausforderung: Mehr Daten, mehr Risiko

    Künstliche Intelligenz (KI) revolutioniert weiterhin die Geschäftswelt und hilft Unternehmen, Aufgaben zu automatisieren, Erkenntnisse zu gewinnen und Innovationen in großem Umfang voranzutreiben. Doch es bleiben Fragen offen, vor allem wenn es um die Art und Weise geht, wie KI-Lösungen Daten sicher verarbeiten und bewegen. Einem Bericht von McKinsey zufolge gehören Ungenauigkeiten in der KI sowie KI-Cybersecurity-Risiken zu den größten Sorgen von Mitarbeitern und Führungskräften.

  • Sichere Daten in der Sovereign Cloud

    Technologie steht im Mittelpunkt strategischer Ambitionen auf der ganzen Welt, aber ihr Erfolg hängt von mehr als nur ihren Fähigkeiten ab. Damit Dienste effektiv funktionieren, braucht es eine Vertrauensbasis, die den Erfolg dieser Technologie untermauert und eine verantwortungsvolle Speicherung der Daten, Anwendungen und Dienste gewährleistet.

  • Integration von Cloud-Infrastrukturen

    Cloud-Technologien werden zum Schlüsselfaktor für Wachstum und verbesserte Skalierbarkeit über das Kerngeschäft hinaus - auch bei Telekommunikationsanbietern (Telcos). Auch hier ist der Wandel zur Nutzung von Produkten und Dienstleistungen "On-Demand" im vollen Gange, sodass Telcos ihre Geschäftsmodelle weiterentwickeln und zunehmend als Managed-Service-Provider (MSPs) und Cloud-Service-Provider (CSPs) auftreten.

  • Acht Einsatzszenarien für Industrial AI

    Artificial Intelligence (AI) entwickelt sich zunehmend zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42?Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein - ein weiteres Drittel (35?Prozent) plant entsprechende Projekte.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen