Sie sind hier: Startseite » Markt » Tipps und Hinweise

KI-gestützte Observability und Automatisierung


Full-Stack Observability ist mittlerweile nahezu unumgänglich für Unternehmen, die Innovationen in zunehmend Cloud-nativen Umgebungen bereitstellen müssen
Vereinfachung komplexer IT-Umgebungen durch Full-Stack Observability


Von Andreas Grabner, CNCF Ambassador and Dynatrace DevRel

Unternehmen kämpfen mit der zunehmenden Komplexität der Cloud. IT-Teams brauchen daher neue Möglichkeiten, um Probleme über den gesamten Technologie-Stack hinweg – von Mainframes bis hin zu Multi-Cloud-Umgebungen – zu erkennen und auf sie reagieren zu können: "Full-Stack Observability". Diesen umfassenden Überblick zu erhalten, ist auch deshalb unverzichtbar, weil Unternehmen innovative Lösungen zunehmend in Cloud-nativen Umgebungen entwickeln. Doch wie funktioniert Full-Stack Observability? Welche Vorteile bietet die Technologie bezüglich der Cybersicherheit und der Automatisierung manueller Prozesse?

Jeden Endpunkt sehen
Full-Stack Observability beschreibt die Fähigkeit, den Zustand jedes Endpunkts in einer verteilten IT-Umgebung auf der Grundlage seiner Telemetriedaten zu bestimmen. Zu den Endpunkten gehören lokale Server, Kubernetes-Infrastrukturen, in der Cloud gehostete Infrastrukturen und Dienste sowie Open-Source-Technologien. Durch die Observability des gesamten Technologie-Stacks erhalten IT-Teams einen umfassenden Echtzeit-Einblick in das Verhalten, die Leistung und den Zustand von Anwendungen und der zugrunde liegenden Infrastruktur.

Observability-Lösungen nutzen Telemetriedaten wie Protokolle, Metriken und Traces, um IT-Verantwortlichen Einblicke in die Anwendungs- und Infrastruktur-Performance sowie die tatsächliche Nutzererfahrung zu geben. Dieser Kontext ermöglicht es auch nachzuvollziehen, wie all diese Einheiten miteinander verbunden sind Dabei geht es nicht nur um Infrastrukturverbindungen, sondern auch um die Beziehungen und Abhängigkeiten zwischen Containern, Microservices und Code auf allen Netzwerkschichten.

Eine umfassende Observability ist nicht zuletzt unerlässlich für das Digital Experience Monitoring (DEM). Hierdurch kann die grundlegende Nutzererfahrung ermittelt werden. Fachkräfte können die Ladezeiten von Webseiten, Reaktionszeiten von Webapplikationen beim Endanwender optimieren und die Latenz verringern. Die schnelle Behebung von Problemen sorgt so zum Beispiel bei Webshops für ein positives Kundenerlebnis und einen ungestörten Einkauf.

Warum Observability des gesamten Systems wichtig ist
Cloud-Umgebungen stellen die IT vor viel komplexere Herausforderungen als traditionelle, lokale Rechenzentren. Als Reaktion darauf fügen viele Unternehmen weitere Überwachungstools hinzu. Doch unter Umständen erhöht die Vielzahl an Tools die Komplexität noch weiter und verlangsamt sogar die Reaktion auf Probleme, weil die Übersicht fehlt.

Wenn die IT-Teams ihre Tools in getrennten Silos verwenden, fehlt ihnen ein vollständiges Bild der Aktivitäten. Ohne eine zentralisierte Quelle, in der alle relevanten Informationen zusammengeführt werden, haben selbst die besten Fachkräfte oft Schwierigkeiten, dringende geschäftskritische Probleme zu verstehen und effizient zu lösen.

Observability ändert dies. Es bietet über eine zentralisierte Plattform Einblick in jede Schicht der Anwendungsinfrastruktur und reduziert so den Wildwuchs an Überwachungstools, der mit hohen Kosten und Ineffizienz einhergeht. DevOps-Teams profitieren ganz besonders von der Observability des vollständigen Technologie-Stacks. Sie erhalten genaues Echtzeit-Feedback von Integrations- oder Produktionssystemen und können somit Probleme hinsichtlich der Nutzererfahrung und Anwendungsleistung schneller lösen. Dank verbesserter Diagnose- und Analysefunktionen verbringen DevOps-Teams weniger Zeit mit der Fehlersuche und können stattdessen ihre Expertise für die Entwicklung neuer Funktionen einsetzen, von denen Benutzer profitieren.

Sechs Vorteile von Full-Stack Observability im Überblick

1. Bewusstsein für die gesamte Umgebung:
Viele Unternehmen haben heute eine Multi-Cloud-Umgebung. Observability bietet einen durchgängigen Einblick in die Gesamtheit der Anwendungsumgebung und beseitigt blinde Flecken in Bezug auf Leistung, Zustand und Verhalten aller Applikationen. Ohne vollständige Observability haben Fachkräfte bestenfalls ein partielles Verständnis ihrer Anwendungsinfrastruktur.

2. Präzise Ursachenermittlung und Priorisierung von Problemen: IT- und DevOps-Teams verschwenden keine Zeit mit dem Durchforsten von Daten und der Interpretation von Statistiken. Mithilfe von Observability können sie schnell die grundlegenden Ursachen identifizieren und Probleme gemäß den Auswirkungen auf Benutzer und Unternehmen priorisieren.

3. Beschleunigung und Automatisierung der CI/CD-Pipeline: Full-Stack Observability hilft DevOps-Teams, potenzielle Probleme in der CI/CD-Pipeline (Continuous Integration und Continuous Delivery) rasch zu identifizieren und schneller zu beheben. So kann neue Software schneller in Produktion genommen werden, Unternehmen steigern ihre Innovationsgeschwindigkeit und profitieren schneller von der Umsetzung guter Ideen.

4. Integration von Runtime-Application-Security in DevSecOps: Sicherheitsteams müssen Risiken adressieren und managen. Deshalb werden sie von anderen IT-Teams oft als Innovationsbremse wahrgenommen. Full-Stack Observability beseitigt diese interne Konfliktkonstellation, weil sie IT-Teams ermöglicht, die Runtime-Application-Security effektiver in DevSecOps-Prozesse zu integrieren. So können die IT-Mitarbeiter die Geschäftsziele unterstützen, ohne die Sicherheit zu gefährden.

5. Bessere Geschäftsentscheidungen mit präziser Analytik: Wenn IT-Teams und Fachabteilungen nicht Hand in Hand arbeiten, ist es für Unternehmen schwierig, geschäftskritische Entscheidungen zu treffen. Observability sorgt für die nötige Transparenz, damit alle Beteiligten einen gemeinsamen Bezugsrahmen haben und sich auf geschäftliche Prioritäten einigen können.

6. Beseitigung operativer Silos und Optimierung der Zusammenarbeit: Mit einer zentralisierten Quelle aller relevanten Informationen für die Ursachenanalyse können sich IT- und DevOps-Teams schnell darüber verständigen, was getan werden muss, um eine gute Funktion zu gewährleisten und wer dafür verantwortlich ist. Dies verbessert die abteilungsübergreifenden Arbeitsbeziehungen und sorgt für eine flüssige interne Zusammenarbeit.

Die Komplexität der Cloud hat den Einblick in das gesamte System erschwert. Doch mit einer zentralisierten Plattform, die die Überwachung über den gesamten Technologie-Stack hinweg automatisiert, können Unternehmen alle erforderlichen Betriebs- und Business-Performance-Metriken erhalten, vom Front-End bis zum Back-End und zu allem, was dazwischen liegt. Hier wirkt auch Künstliche Intelligenz Wunder: Sobald ein System alle erforderlichen Telemetriedaten zusammenführt, kann deterministische KI schnell aufzeigen, was wichtig ist und weshalb. Dann fällt es Fachkräften leicht, die richtigen Maßnahmen zu ergreifen. Der Einsatz von KI für den IT-Betrieb (AIOps) hilft nicht nur dabei, die Informationsflut im IT-Betrieb zu beherrschen, sondern auch die Effizienz und Innovationsgeschwindigkeit zu erhöhen. AIOps ermöglichen eine automatisierte Ursachenanalyse, sodass IT-Teams sich auf übergeordnete Aufgaben konzentrieren können, statt sich in der Suche nach Fehlern zu verlieren.

Durch die Observability des gesamten Systems können Unternehmen alles durchblicken - von der Erfahrung des Endanwenders bis hin zum Zustand der Infrastruktur, inklusive aller Beziehungen und Abhängigkeiten zwischen den einzelnen Schichten, Komponenten oder Codeteilen. Dies unterstützt Unternehmen dabei, ihre digitale Transformation schneller, einfacher und intelligenter gestalten. (Dynatrace: ra)

eingetragen: 07.12.23
Newsletterlauf: 26.02.24

Dynatrace: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Datenqualität entscheidend

    Künstliche Intelligenz, kurz KI, gehört derzeit zu den meistdiskutierten Themen. Die Entwicklungen sind rasant, die Möglichkeiten scheinen fast unbegrenzt. Viele Unternehmen arbeiten deshalb schon mit KI oder sind aktuell dabei, Tools zu implementieren. "KI als Katalysator für Optimierung, Standardisierung und Digitalisierung wird von Unternehmen bereits vielfältig eingesetzt. Doch es fehlen in vielen Branchen, wie etwa im Retail-Bereich, noch Use Cases - es kann noch nicht alles mit KI-Tools gelöst werden. Vor der Implementierung gilt es in vielen Fällen deshalb noch zu prüfen, ob sich der Einsatz von KI in jedem Fall lohnt", sagt Andreas Mohr, SAP Senior Development Consultant bei retailsolutions.

  • Sicherheitsrisiken in der Cloud

    Es gibt gute Gründe, Daten und Dienste in eine Cloud-Umgebung zu verlagern: Flexibilität, Skalierbarkeit und Kosteneffizienz sprechen eindeutig für die Cloud. Es sind jedoch auch die Risiken zu bedenken und zu managen. Ein wichtiger Aspekt ist die Datensicherheit: Da die Daten in externen Rechenzentren gespeichert werden, sind sie potenziell Angriffen ausgesetzt - sensible Informationen können abgefangen oder manipuliert werden.

  • Was Unternehmen beachten müssen

    Künstliche Intelligenz gehört für immer mehr Unternehmen ganz selbstverständlich zum Geschäftsalltag dazu. Insbesondere die generative KI (GenAI) erlebt einen Boom, den sich viele so nicht vorstellen konnten. GenAI-Modelle sind jedoch enorm ressourcenhungrig, sodass sich Firmen Gedanken über die Infrastruktur machen müssen. NTT DATA, ein weltweit führender Anbieter von digitalen Business- und Technologie-Services, zeigt, warum die Cloud der Gamechanger für generative KI ist.

  • SAP mit umfassender Cloud-Strategie

    Für die digitale Transformation von Unternehmen setzt SAP auf eine umfassende Cloud-Strategie. Hier bietet SAP verschiedene Lösungen an. Neben der SAP Public Cloud, die sehr stark auf den SME-Markt zielt, bedient die Industry Cloud als Kombination aus Private Cloud und industriespezifischen Cloud-Lösungen eher den LE-Markt.

  • Warum steigende IT-Kosten das kleinere Übel sind

    Es gibt Zeiten, in denen sind CIOs wirklich nicht zu beneiden. Zum Beispiel dann, wenn sie der Unternehmensführung wieder einmal erklären müssen, warum erneut höhere Investitionen in die IT nötig sind. Eines der größten Paradoxe dabei: Kosten steigen auf dem Papier auch dann, wenn eigentlich aus Kostengründen modernisiert wird. Der Umstieg vom eigenen Server im Keller in die Cloud? Mehrkosten. Neue SaaS-Lösungen?

  • Optimierung von Java-Workloads in der Cloud

    Cloud-Infrastrukturen versprechen Skalierbarkeit, Effizienz und Kostenvorteile. Doch um Engpässe zu vermeiden, überprovisionieren viele Unternehmen ihre Cloud-Kapazitäten - und bezahlen so oftmals für Ressourcen, die sie gar nicht nutzen. Wie lässt sich das ändern? Ein zentraler Hebel ist die Optimierung von Java-Workloads in der Cloud. Cloud-Infrastrukturen bringen viele Vorteile, aber auch neue Komplexität und oft unerwartet hohe Kosten mit sich. Bei vielen Unternehmen nehmen Java-Umgebungen und -Anwendungen große Volumina in gebuchten Cloud-Kapazitäten ein, denn Java gehört noch immer zu den beliebtesten Programmiersprachen: Laut dem aktuellen State of Java Survey and Report 2025 von Azul geben 68 Prozent der Befragten an, dass über 50 Prozent ihrer Anwendungen mit Java entwickelt wurden oder auf einer JVM (Java Virtual Machine) laufen.

  • Wer Cloud sagt, muss Datensouveränität denken

    Die Cloud hat sich längst zu einem neuen IT-Standard entwickelt. Ihr Einsatz bringt allerdings neue Herausforderungen mit sich - insbesondere im Hinblick auf geopolitische Risiken und die Gefahr einseitiger Abhängigkeiten. Klar ist: Unternehmen, Behörden und Betreiber kritischer Infrastrukturen benötigen eine kompromisslose Datensouveränität. Materna Virtual Solution zeigt, welche zentralen Komponenten dabei entscheidend sind.

  • KI-Herausforderung: Mehr Daten, mehr Risiko

    Künstliche Intelligenz (KI) revolutioniert weiterhin die Geschäftswelt und hilft Unternehmen, Aufgaben zu automatisieren, Erkenntnisse zu gewinnen und Innovationen in großem Umfang voranzutreiben. Doch es bleiben Fragen offen, vor allem wenn es um die Art und Weise geht, wie KI-Lösungen Daten sicher verarbeiten und bewegen. Einem Bericht von McKinsey zufolge gehören Ungenauigkeiten in der KI sowie KI-Cybersecurity-Risiken zu den größten Sorgen von Mitarbeitern und Führungskräften.

  • Sichere Daten in der Sovereign Cloud

    Technologie steht im Mittelpunkt strategischer Ambitionen auf der ganzen Welt, aber ihr Erfolg hängt von mehr als nur ihren Fähigkeiten ab. Damit Dienste effektiv funktionieren, braucht es eine Vertrauensbasis, die den Erfolg dieser Technologie untermauert und eine verantwortungsvolle Speicherung der Daten, Anwendungen und Dienste gewährleistet.

  • Integration von Cloud-Infrastrukturen

    Cloud-Technologien werden zum Schlüsselfaktor für Wachstum und verbesserte Skalierbarkeit über das Kerngeschäft hinaus - auch bei Telekommunikationsanbietern (Telcos). Auch hier ist der Wandel zur Nutzung von Produkten und Dienstleistungen "On-Demand" im vollen Gange, sodass Telcos ihre Geschäftsmodelle weiterentwickeln und zunehmend als Managed-Service-Provider (MSPs) und Cloud-Service-Provider (CSPs) auftreten.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen