Sie sind hier: Startseite » Markt » Hintergrund

Software-as-a-Service & effektive Personalisierung


Individuelle Empfehlungssysteme helfen Online-Shops bei Optimierung von Konversionsraten
In Shopsysteme integrierte Standardfunktionen reichen häufig nicht aus - SaaS-Lösungen minimieren Aufwand bei Implementierung und Betrieb

(10.03.16) - Online-Shops können ihre Konversionsraten durch gezielte Produktempfehlungen deutlich steigern. Meist setzen sie bei Analyse und Berechnung bislang auf einfache, im Shop integrierte Funktionen. Laut Yoochoose GmbH benötigen immer mehr Shopbetreiber jedoch individuell zugeschnittene, selbstlernende Lösungen, um Daten gezielt auszuwerten. Auf diese Weise können sie ihre Umsätze entscheidend erhöhen. Allerdings setzen nur rund 25 Prozent der Shops ein solches Empfehlungssystem ein.

"Mit Machine Learning ist Personalisierung für Online-Shops besonders im Bereich Konsumgüter so einfach wie nie zuvor", sagt Michael Friedmann, Geschäftsführer der Yoochoose GmbH. "Um gezielte Angebote zu machen und damit die Konversion zu erhöhen, benötigen sie eine auf ihren Bedarf zugeschnittene Personalisierungs-Technologie. Bislang schrecken viele Shops allerdings vor dem Aufwand einer Implementierung zurück. Um diesen zu reduzieren, empfiehlt sich der Einsatz einer SaaS-Plattform".

Mithilfe solcher Cloud-basierter Lösungen haben Shop-Betreiber einen großen Funktionsumfang zur Verfügung, ohne dass sie in eigene Hard- und Software investieren müssen. Um Daten profund zu analysieren und nutzbar zu machen, erledigen SaaS-Plattformen die drei nötigen Schritte:

1. Tracking und Datenbanken: Zuerst gilt es, genügend Daten mithilfe eines Tracking zu sammeln. Von welchem Standort und von welchem Gerät greift der Kunde auf die Plattform zu? Wann hat er die Produktdetailseite aufgerufen, wann hat er einen Artikel in den Warenkorb gelegt oder wieder entfernt? Und welche Produkte hat er am Ende zu welchem Preis gekauft? Solche Informationen werden gesammelt und in NoSQL-Datenbanken festgehalten.

2. Feature Engineering: Aus den Tracking-Daten werden nun sogenannte Features abgeleitet. Das können anfangs mehrere Hundert sein – etwa die Uhrzeit des Besuchs, die Zeitabstände zwischen Aktionen oder die Zeitspanne seit dem letzten Kauf. Letztlich werden in der Regel nur rund ein Dutzend Features für die Prognose verwendet. Die Herausforderung für Shop-Betreiber liegt darin, die Features zu identifizieren, die einen signifikanten Einfluss auf das Kaufverhalten haben. Das ist von Shop zu Shop sehr unterschiedlich und erfordert eine intelligente Analyse.

3. Datenverarbeitung und Analysen: Die Berechnung konkreter Produktempfehlungen erfolgt auf Grundlage der für den Shop definierten Features. Dazu werden in rechenintensiven Verfahren zunächst Prognosemodelle erstellt. Dies kann angesichts großer Datenvolumina auch mit leistungsfähiger Hardware mitunter mehrere Stunden dauern. Die Modelle werden in schnellen In-Memory-Datenbanken gespeichert und als Grundlage für die Online-Berechnung von Empfehlungen verwendet. Damit ist sichergestellt, dass Shop-Besucher bei jedem Klick aktuelle Kauftipps erhalten.

Gerade angesichts der komplexen Verbindung von NoSQL- oder In-Memory-Datenbanken mit leistungsfähigen Servern empfiehlt Yoochoose den Einsatz einer Software-as-a-Service-Lösung (SaaS) zur Personalisierung: Betreiber von Online-Shops erhalten damit die entsprechenden Ergebnisse ohne eigenen Aufwand für Implementierung und Betrieb. Damit ist es grundsätzlich für jeden Webshop möglich, von Personalisierung zu profitieren. (Yoochoose: ra)

Yoochoose: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>



Meldungen: Hintergrund

  • Anwendungsfälle für KI

    Unternehmen erleben heute mit der Künstlichen Intelligenz (KI) einen Déjà-vu-Moment. Ähnlich wie bei früheren Technologiesprüngen - dem Aufkommen des PCs, des Internets oder der Cloud-Technologie - stehen sie an einem Wendepunkt, an dem die breite Einführung von KI die Unternehmenslandschaft transformiert.

  • Vom Kreditinstitut zur Technologie-Oase

    Wir schreiben das Jahr 2035: Sie wachen auf und überprüfen Ihre Finanzen über einen sprachaktivierten digitalen Assistenten, der als Hologramm von Elvis erscheint. Nach der Authentifizierung durch Stimm- und Fingerabdruck-Biometrie liefert Ihnen der verstorbene King of Rock'n'Roll einen Überblick über Ihre Ausgaben, Ersparnisse und Investitionen in einem personalisierten Dashboard, das alle Ihre Konten und Finanzdaten an einem Ort zusammenfasst.

  • Cloud-Drucklösungen spielen eine große Rolle

    Heutzutage lässt sich technischer Fortschritt kaum mehr mit dem bloßen Auge erkennen. Selten vergeht ein Tag ohne eine weitere Innovation, die für mehr Effizienz sorgt. Diese Entwicklung macht auch vor Druckern nicht Halt. Cloud-Lösungen ermöglichen zentrale Administration und Kosteneinsparungen bei lokalen Servern. Doch in diesem Zusammenhang geht die Tendenz eher in Richtung langsamer Wechsel in die Wolke. Warum ist das so? "In vielen Unternehmen - insbesondere aus Branchen, in denen sensible Daten auf der Tagesordnung stehen - herrschen Sicherheits- und Datenschutzbedenken.

  • Finanzbranche steht vor einem Wendepunkt

    Immer mehr traditionelle Banken erkennen endlich die Vorteile des Outsourcings, um ihren Weg zur Digitalisierung zu beschleunigen und so ihre Effizienz und Kundenzufriedenheit zu optimieren. In Deutschland bremsen jedoch regulatorische Anforderungen das Tempo der Transformation. Karl im Brahm, CEO von Objectway DACH, betont, dass Banken diese Hürden nur durch Kooperationen mit Fintechs überwinden können.

  • CPUs und DSAs für Cloud- und KI-Erfolg

    Die Chimäre ist in der griechischen Mythologie eine Kreuzung aus Löwe, Ziege und Schlange. Sie hat den Kopf des Löwen, den Körper der Ziege mit einem weiteren Ziegenkopf auf dem Rücken und den Schwanz der Schlange

  • Vertrauen gegenüber Generative AI schwindet

    Im letzten Jahr zeigten sich deutsche Unternehmen wenig beeindruckt von den Sicherheitsrisiken von ChatGPT und Co. Sie vertrauten den vielversprechenden Generative-AI-Anwendungen und ihren Vorteilen bedingungslos. Nun legen die Ergebnisse einer aktuellen Gigamon-Studie* jedoch nahe, dass die Skepsis gegenüber diesen Tools in den vergangenen zwölf Monaten zugenommen hat.

  • Bedeutung der Cyber-Sicherheit

    Wie in jedem Jahr, so hat auch in diesem die Firma IBM zusammen mit dem Ponemon Institute die Studie Cost of a Data Breach 2024 veröffentlicht. Die Ergebnisse sprechen Bände: Mit 4,88 Millionen US-Dollar (rund 4,50 Millionen Euro) je Sicherheitsverletzung im weltweiten Durchschnitt liegen diese Kosten 10 Prozent über dem Jahr 2023 mit 4,5 Millionen US-Dollar (rund 4,16 Millionen Euro) und erreichen ein Rekord-Hoch.

  • Sicherheit in der Cloud

    Der Cloud Computing-Markt wächst beständig weiter und ein Ende dieses Aufwärtstrends scheint nicht in Sicht zu sein. Laut Prognosen könnte er bis 2032 die Marke von gut 2,29 Milliarden US-Dollar knacken. Das würde einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 16,5 Prozent entsprechen.

  • Demokratisierung der Künstlichen Intelligenz

    Open Source basiert auf Zusammenarbeit und Transparenz. Dank dieser beiden unbestreitbaren Vorteile haben Open-Source-Lösungen das Potenzial, die Art und Weise zu revolutionieren, wie KI-Systeme entwickelt und eingesetzt werden. Ein offener Ansatz für Künstliche Intelligenz ist unerlässlich.

  • Wie KI den Customer Service revolutioniert

    Die IT-Branche ist ein Umfeld des ständigen Wettbewerbs. CIOs treiben heute die digitale Transformation voran und investieren in digitale Technologien, um die Effizienz und Rendite ihres Unternehmens zu maximieren. Da sie dafür nur wenig Zeit und Ressourcen für IT-Services aufwenden möchten, wenden sie sich immer mehr der generativen KI zu.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen