Sie sind hier: Startseite » Markt » Tipps und Hinweise

Optimale Wissensspeicher


Vier Kriterien für die Auswahl der richtigen Graphdatenbank
Die Cloud-Verfügbarkeit vereinfacht das Bereitstellen und Skalieren von Datenbanken


Graphdatenbanken sind leistungsstarke Werkzeuge, um komplexe Daten-Beziehungen darzustellen und vernetzte Informationen schnell zu analysieren. Doch jeder Datenbanktyp hat spezifische Eigenschaften und eignet sich für andere Anwendungsfälle. Welche Graphdatenbank ist also wann die richtige? Aerospike empfiehlt Unternehmen, ihre Anforderungen unter vier Gesichtspunkten zu prüfen.

Graphdatenbanken haben sich als äußerst leistungsfähige Lösungen für viele Anwendungsfälle etabliert. Mit ihnen lassen sich vernetzte, strukturierte und unstrukturierte Daten schnell verarbeiten, analysieren und darstellen. Noch mehr an Bedeutung gewinnen Graphdatenbanken durch die Verbreitung von Künstlicher Intelligenz (KI) und Machine Learning (ML). Denn Graphdatenbanken sind optimale Wissensspeicher für Systeme, die mit Retrieval-Augmented Generation (RAG) arbeiten. Zudem vereinfacht die Cloud-Verfügbarkeit das Bereitstellen und Skalieren von Datenbanken. Doch die Hersteller bieten eine ganze Reihe unterschiedlicher Datenbanktypen und Datenmodelle für Graphen. Der Realtime-Datenbankanbieterin Aerospike empfiehlt daher, bei der Auswahl auf die folgenden vier Faktoren zu achten.

1. Analytischer oder operativer Anwendungsfall
Die wichtigste Frage zu Projektbeginn: Soll die Graphdatenbank analytische oder operative Anwendungsfälle unterstützen? Analytische und operative Graphen sind zwei unterschiedliche Ansätze, die beide spezifische Einsatzgebiete und Anforderungen bedienen. Analytische Graphen sind darauf ausgelegt, komplexe Datenanalysen durchzuführen und Muster in Datensätzen zu erkennen; sie nutzen daher häufig Online Analytical Processing (OLAP).

Einsatzgebiete sind Business Intelligence und Data Science, wo sie Analysen als Basis für strategische Entscheidungen liefern. Wissensgraphen, Datenexploration und -visualisierung zur Identifizierung komplexer Muster oder Netzwerkanalysen zur Optimierung von Datenflüssen sind typische Anwendungsfälle. Analytische Graphen eignen sich hervorragend, wenn das Datenvolumen ein Terabyte nicht übersteigt, Abfragen weniger zeitkritisch sind und nur eine begrenzte Anzahl gleichzeitiger User zugreift.

Operative Graphen sind hingegen für dynamische, transaktionale Umgebungen und für Echtzeitanwendungen konzipiert. Beispiele sind Identitätsabgleich in Werbe- und Marketingtechnologien, Echtzeit-Betrugserkennung im Bankwesen oder personalisierte Angebote in E-Commerce-Anwendungen. All diese Anwendungen erfordern eine sehr geringe Latenz im Bereich von Millisekunden, die Anzahl der gleichzeitigen Benutzer kann in die Tausende oder Millionen gehen und es sind strenge Service-Level-Vereinbarungen wie beispielsweise eine Verfügbarkeit von 99,999 Prozent einzuhalten. Daher verwenden operative Graphen Online Transaction Processing (OLTP), was schnelle Lese-, Schreib- und Aktualisierungsvorgänge ermöglicht.

2. LPG- oder RDF-Datenmodell
Graphdatenbanken zählen zu den NoSQL-Datenbanken und unterscheiden sich zunächst im Datenmodell – Labeled Property Graph (LPG) oder Resource Description Framework (RDF). RDF stellt Daten in Form von Tripeln dar, die sich aus Subjekt, Prädikat und Objekt zusammensetzen. Das RDF-Datenmodell ist standardisiert und damit unflexibler bei der Daten-Modellierung als LPG.

LPG-Modelle organisieren die Daten in Form von Knoten und Kanten. Sowohl Knoten als auch Kanten können über Eigenschaften näher beschrieben werden. Das LPG-Datenmodell ermöglicht eine agile Datenmodellierung. Neue Beziehungen und Knoten lassen sich hinzufügen, ohne die bestehende Struktur zu ändern. Die meisten Unternehmen werden sich daher für eine Graph-Anwendung basierend auf dem LPG-Modell entscheiden.

3. Prozedurale oder deskriptive Abfragesprache
Um komplexe Datenmuster zu durchsuchen und den kürzesten Pfad zwischen Knoten zu ermitteln, verwenden Graphdatenbanken spezielle Abfragesprachen. LPG-Modelle nutzen Cypher, Gremlin oder GQL (Graph Query Language). Letztere wurde Anfang 2024 zum internationalen ISO-Standard erklärt. Die Standardabfragesprache für RDF-Modelle ist SPARQL.

Gremlin, Teil des TinkerPop-Frameworks, ist als Open-Source-Sprache anbieterunabhängig und nutzt einen prozeduralen Ansatz. Sie erfordert daher ein tiefes Verständnis von Aufbau und Verteilung der Daten. Cypher, ebenfalls seit kurzem als Open-Source verfügbar, GQL und SPARQL sind deskriptive und daher SQL-ähnliche Abfragesprachen.

Während eine prozedurale Abfragesprache Entwicklern mehr Kontrolle über den Ausführungsprozess ermöglicht, ist eine deskriptive Abfragesprache für viele einfacher zu erlernen und anzuwenden.

4. Performance und Skalierbarkeit
Graphdatenbanken speichern Datenbeziehungen effizient und führen komplexe Datenbankabfragen sehr schnell aus. Dennoch variieren Performance und Skalierbarkeit je nach Datenbank-Anbieter. "Einige Datenbanken verwenden In-Memory-Funktionen, die für eine Performance von weniger als einer Millisekunde und maximale Speichereffizienz sorgen. Mit zunehmendem Datenvolumen sind In-Memory-Systeme jedoch häufig überlastet, worunter die Skalierbarkeit leidet", erklärt Evan Cummack, CPO bei Aerospike.

Ein Single-Instance-System ist einfacher zu verwalten und zu konfigurieren, schränkt jedoch die Skalierbarkeit ein. Für wachsende Datenmengen oder zukünftig mehr User-Anfragen ist eine verteilte Graphdatenbank besser geeignet.

Bei verteilten Instanzen können allerdings Multi-Hop-Abfragen zu einer Herausforderung für die Skalierung werden. Vor allem native Graphdatenbanken lösen dies durch indexfreie Adjazenz. Dabei speichern sie direkte Verweise zwischen Knoten, um schnell zwischen verwandten Entitäten zu navigieren. Abfragen werden so noch effizienter und schneller. Allerdings steigt dabei der Speicherbedarf, abhängig von der Dichte der Graphen und der Anzahl der Beziehungen. Und wenn die Datenmengen den verfügbaren Speicherplatz übersteigen, sinkt die Leistung sofort rapide.

Indexfreie Adjazenz ist nicht skalierbar und funktioniert daher nur bei kleineren Datensätzen wirklich gut. Andere Datenbanken verwenden stattdessen Mechanismen wie Indizes, die sich positiv auf Performance und Effizienz auswirken können.

Fazit
Bei der Entscheidung für eine Graphdatenbank sollten Unternehmen vorab ihre spezifischen Anforderungen sowie die vorhandene Infrastruktur und Wachstumspläne sorgfältig prüfen. Vor allem der Anwendungsfall ist entscheidend. Denn jede Art von Graphdatenbank ist für einen bestimmten Zweck konzipiert.
Darüber hinaus haben Unternehmen die Wahl zwischen nativen und Multimodell-Graphdatenbanken. Während native Graphdatenbanken ausschließlich für die Verarbeitung von Graphen optimiert sind, unterstützen Multimodell-Datenbanken verschiedene Datenmodelle und sind daher flexibler, wenn es um künftige Anforderungen geht. (Aerospike: ra)

eingetragen: 23.12.24
Newsletterlauf: 14.03.25

Aerospike: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Was Unternehmen beachten müssen

    Künstliche Intelligenz gehört für immer mehr Unternehmen ganz selbstverständlich zum Geschäftsalltag dazu. Insbesondere die generative KI (GenAI) erlebt einen Boom, den sich viele so nicht vorstellen konnten. GenAI-Modelle sind jedoch enorm ressourcenhungrig, sodass sich Firmen Gedanken über die Infrastruktur machen müssen. NTT DATA, ein weltweit führender Anbieter von digitalen Business- und Technologie-Services, zeigt, warum die Cloud der Gamechanger für generative KI ist.

  • SAP mit umfassender Cloud-Strategie

    Für die digitale Transformation von Unternehmen setzt SAP auf eine umfassende Cloud-Strategie. Hier bietet SAP verschiedene Lösungen an. Neben der SAP Public Cloud, die sehr stark auf den SME-Markt zielt, bedient die Industry Cloud als Kombination aus Private Cloud und industriespezifischen Cloud-Lösungen eher den LE-Markt.

  • Warum steigende IT-Kosten das kleinere Übel sind

    Es gibt Zeiten, in denen sind CIOs wirklich nicht zu beneiden. Zum Beispiel dann, wenn sie der Unternehmensführung wieder einmal erklären müssen, warum erneut höhere Investitionen in die IT nötig sind. Eines der größten Paradoxe dabei: Kosten steigen auf dem Papier auch dann, wenn eigentlich aus Kostengründen modernisiert wird. Der Umstieg vom eigenen Server im Keller in die Cloud? Mehrkosten. Neue SaaS-Lösungen?

  • Optimierung von Java-Workloads in der Cloud

    Cloud-Infrastrukturen versprechen Skalierbarkeit, Effizienz und Kostenvorteile. Doch um Engpässe zu vermeiden, überprovisionieren viele Unternehmen ihre Cloud-Kapazitäten - und bezahlen so oftmals für Ressourcen, die sie gar nicht nutzen. Wie lässt sich das ändern? Ein zentraler Hebel ist die Optimierung von Java-Workloads in der Cloud. Cloud-Infrastrukturen bringen viele Vorteile, aber auch neue Komplexität und oft unerwartet hohe Kosten mit sich. Bei vielen Unternehmen nehmen Java-Umgebungen und -Anwendungen große Volumina in gebuchten Cloud-Kapazitäten ein, denn Java gehört noch immer zu den beliebtesten Programmiersprachen: Laut dem aktuellen State of Java Survey and Report 2025 von Azul geben 68 Prozent der Befragten an, dass über 50 Prozent ihrer Anwendungen mit Java entwickelt wurden oder auf einer JVM (Java Virtual Machine) laufen.

  • Wer Cloud sagt, muss Datensouveränität denken

    Die Cloud hat sich längst zu einem neuen IT-Standard entwickelt. Ihr Einsatz bringt allerdings neue Herausforderungen mit sich - insbesondere im Hinblick auf geopolitische Risiken und die Gefahr einseitiger Abhängigkeiten. Klar ist: Unternehmen, Behörden und Betreiber kritischer Infrastrukturen benötigen eine kompromisslose Datensouveränität. Materna Virtual Solution zeigt, welche zentralen Komponenten dabei entscheidend sind.

  • Fünf Mythen über Managed Services

    Managed Services sind ein Erfolgsmodell. Trotzdem existieren nach wie vor einige Vorbehalte gegenüber externen IT-Services. Die IT-Dienstleisterin CGI beschreibt die fünf hartnäckigsten Mythen und erklärt, warum diese längst überholt sind.

  • KI-Herausforderung: Mehr Daten, mehr Risiko

    Künstliche Intelligenz (KI) revolutioniert weiterhin die Geschäftswelt und hilft Unternehmen, Aufgaben zu automatisieren, Erkenntnisse zu gewinnen und Innovationen in großem Umfang voranzutreiben. Doch es bleiben Fragen offen, vor allem wenn es um die Art und Weise geht, wie KI-Lösungen Daten sicher verarbeiten und bewegen. Einem Bericht von McKinsey zufolge gehören Ungenauigkeiten in der KI sowie KI-Cybersecurity-Risiken zu den größten Sorgen von Mitarbeitern und Führungskräften.

  • Sichere Daten in der Sovereign Cloud

    Technologie steht im Mittelpunkt strategischer Ambitionen auf der ganzen Welt, aber ihr Erfolg hängt von mehr als nur ihren Fähigkeiten ab. Damit Dienste effektiv funktionieren, braucht es eine Vertrauensbasis, die den Erfolg dieser Technologie untermauert und eine verantwortungsvolle Speicherung der Daten, Anwendungen und Dienste gewährleistet.

  • Integration von Cloud-Infrastrukturen

    Cloud-Technologien werden zum Schlüsselfaktor für Wachstum und verbesserte Skalierbarkeit über das Kerngeschäft hinaus - auch bei Telekommunikationsanbietern (Telcos). Auch hier ist der Wandel zur Nutzung von Produkten und Dienstleistungen "On-Demand" im vollen Gange, sodass Telcos ihre Geschäftsmodelle weiterentwickeln und zunehmend als Managed-Service-Provider (MSPs) und Cloud-Service-Provider (CSPs) auftreten.

  • Acht Einsatzszenarien für Industrial AI

    Artificial Intelligence (AI) entwickelt sich zunehmend zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42?Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein - ein weiteres Drittel (35?Prozent) plant entsprechende Projekte.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen