Sie sind hier: Startseite » Markt » Tipps und Hinweise

Implementierung von Big Data-Technologien


Fünf Best Practices für einen erfolgreichen Einsatz von Big Data
Checkliste die fünf wichtigsten Erfolgsfaktoren bei der Einführung von Big Data – beispielsweise auf Basis von Hadoop oder NoSQL-Datenbanken


Viele Aspekte beeinflussen die Entscheidung, vorhandene IT-Systemlandschaften funktional weiter auszubauen und zu modernisieren. Big Data-Umgebungen etwa bieten eine hohe Flexibilität und Skalierbarkeit, um sehr große Datenmengen kosteneffizient zu erfassen und auszuwerten. Die Einführung von NoSQL-Datenbanken oder Hadoop, als typische Vertreter von Big Data-Umgebungen, ist oft der Anlass für eine evolutionäre Weiterentwicklung der eingesetzten Applikationen. Progress erläutert fünf Best Practices, die sich bei der Implementierung von Big Data-Projekten bereits bewährt haben.

1. Die Ziele eines Geschäftsprozesses verstehen.
Entsprechen langjährig genutzte Applikationen nicht mehr den Leistungserwartungen, entsteht schnell der Wunsch einer Migration auf ein anderes aktuelles Betriebssystem oder zumindest nach einer versionsmäßigen Erneuerung. Die geplante Einführung von Big Data-Technologie sollte Anlass sein, zunächst einmal zu prüfen, ob und wie eine Applikation aktuell die Anforderungen der Anwender im Rahmen eines bestimmten Geschäftsprozesses unterstützt. In vielen Fällen bietet die Integration von Big Data-Technologien zusätzliche Möglichkeiten, die betriebswirtschaftlichen Ziele einer Applikation genauer, schneller und umfassender zu erreichen.

2. Die benötigten Datenquellen ermitteln.
Die Kenntnis der Ziele eines Geschäftsprozesses bietet eine gute Grundlage für eine bessere Beurteilung der dafür benötigten Daten und der Skalierbarkeit. Die Einführung von Big Data-Technologien sollte daher auch als Anlass zu einer Ermittlung zusätzlicher Datenquellen dienen, mit denen sich die Effizienz von Geschäftsprozessen steigern lässt. Eine Applikation zur Analyse des Kundenverhaltens profitiert beispielsweise von Daten der Verkaufshistorie, von Daten aus dem Customer Service, von vorhandenen oder neu zu erstellenden Kundenprofilen oder der Auswertung von Social Media-Aktivitäten und -Kommentaren.

3. Überprüfbare Performancekriterien definieren.
Bei Big Data geht es immer um eine Leistungssteigerung, sei es eine schnellere Verarbeitung, die Einbeziehung größerer Datenmengen oder detailliertere Datenanalysen. Die Festlegung von Performancewerten ermöglicht einen Soll-Ist-Vergleich und ein frühzeitiges Gegensteuern bei Abweichungen. Das betrifft etwa schnellere Zugriffszeiten auf Daten oder die Unterstützung einer größeren Zahl gleichzeitiger Benutzer.

4. Skalierbarkeit berücksichtigen.
Die Anforderung nach einer höheren Performance ist eng mit der Skalierbarkeit verbunden. Bei allen Überlegungen zur Verbesserung der Performance müssen auch die Auswirkungen auf die Skalierbarkeit beachtet werden. Theoretisch heißt "linear skalierbar", dass sich bei einer Verdopplung der CPU-Leistung oder der Speicherkapazität auch die doppelte Performance ergibt. In der Praxis hat die Skalierung der Speicherkapazität mehrere Dimensionen.

Auch die physischen Speichersysteme zur Steuerung der einzelnen Festplatten und die CPU-Leistung müssen beispielsweise ausgebaut werden. Der weitere Ausbau erfordert daher eine Kostenanalyse der einzelnen Komponenten, um die angestrebte Performance betriebswirtschaftlich rechtfertigen zu können.

5. Den Bedarf an Datenintegration bewerten.
Eine Steigerung der Performance und Skalierbarkeit bei einem wachsenden Datenvolumen sowie eine Berücksichtigung diverser Datentypen bedeuten gleichzeitig höhere Anforderungen bei der Datenintegration. In vielen Fällen hat es sich bewährt, in kleinen bis mittelgroßen Big Data-Projekten die Datenintegration zu erproben sowie die damit verbundenen Prozesse und Architekturen zu etablieren, die dann auch auf größere Projekte übertragen werden können.

Die Integration der Daten in eine Big Data-Umgebung ist die eine Seite der Medaille, auch der umgekehrte Zugang sollte bedacht werden. Es sollte auch ein standardisierter Zugriff auf NoSQL-Datenbanken und eine Hadoop-Umgebung sichergestellt sein, damit Big Data-Analysen auch von den vorhandenen Applikationen genutzt werden können.

"Bei der Implementierung von Big Data-Technologien geht es immer um strategische Entscheidungen, von denen viele Geschäftsprozesse und Fachbereiche eines Unternehmens profitieren", sagt Olf Jännsch, Regional Vice President Central and Eastern Europe bei Progress. "Um eine hohe Flexibilität zu erzielen, sollten die eingesetzten Technologien strukturierte und unstrukturierte Daten unterstützen, eine hohe Verfügbarkeit bieten und plattformunabhängig einsetzbar sein – On-Premise, in der Cloud und in hybriden Architekturen. Sie bieten damit gleichzeitig einen wichtigen Hebel zur weiteren Modernisierung der langjährig genutzten Applikationslandschaften." (Progress: ra)

eingetragen: 11.09.16
Home & Newsletterlauf: 21.09.16

Progress Software: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Mythos der maßgeschneiderten Entwicklung

    Der gezielte und flexible Einsatz von Technologie ist ein zentraler Erfolgsfaktor für Unternehmen. Digitalisierung ist für viele Unternehmen weiterhin eine Priorität, der sie eine substantielle Menge an Ausgaben einräumen: Einem Bericht des IDC zufolge, werden die weltweiten Investitionen in IT-Transformationsinitiativen voraussichtlich 4 Billionen US-Dollar bis 2027 übersteigen. Jedoch erreichen weniger als die Hälfte (48?Prozent) aller Digitalisierungsprojekte die angestrebten Ziele. Laut McKinsey scheitern sogar sieben von zehn Unternehmenstransformationen.

  • Migration in lokale Cloud-Rechenzentren

    Digitale Souveränität in und mit der Cloud - dafür sind Unternehmen gefordert, die entscheidenden Weichen zu stellen. Aus der Projekterfahrung von Yorizon, Vorreiterin für Open Source Edge-Cloud-Services, sind es fünf entscheidende Faktoren, die eine unabhängige und zukunftsfähige Cloud-Strategie sicherstellen.

  • Agentische KI im Retail-Bereich

    KI revolutioniert wie wir Ideen und Produkte entwickeln, Handel treiben und Informationen sammeln. Die menschliche Genialität bekommt dabei einen Kompagnon: die KI. Doch obwohl die generative KI häufig den größten Hype erzeugt, wird es die agentische KI sein, die Händlern den größten Nutzen bringt.

  • IT-Resilienz als Überlebensfaktor

    Angesichts der vom Bundesamt für Sicherheit in der Informationstechnik als "besorgniserregend" eingestuften Cybersicherheitslage gewinnen automatisierte Ansätze für die Stärkung der IT-Resilienz zunehmend an Bedeutung, wie aktuelle Implementierungen zeigen.

  • Backup-Lücke von Microsoft 365

    Unternehmen nutzen Microsoft 365 als Grundlage für ihre Produktivität. Doch neben den Vorteilen solcher Produktivitätsplattformen wird immer wieder eine Lücke in der Datenschutzstrategie übersehen: das Prinzip der geteilten Verantwortung. Diese Nachlässigkeit setzt wichtige Geschäftsinformationen erheblichen Risiken aus, die sich in Ausfallzeiten und wirtschaftlichen Verlusten niederschlagen können.

  • KI und digitale Souveränität

    Die europaweite Debatte rund um digitale Souveränität fokussiert sich in den vergangenen Wochen überwiegend auf das Thema "KI" (AI-Gigafactory etc.). Dabei gerät ein anderer Aspekt gerade etwas in den Hintergrund: Cyberresilienz und die Kontrolle über kritische Daten innerhalb Europas.

  • DMS und digitale Souveränität

    Die Welt ordnet sich neu und Europa steht unter wachsendem Druck, seine digitale Unabhängigkeit zu stärken. Laut einer Bitkom-Studie (2025) fordern 84 Prozent der Unternehmen, dass die neue Bundesregierung der digitalen Souveränität höchste Priorität einräumt. Gerade im Umgang mit vertraulichen Dokumenten und geschäftskritischen Informationen zeigt sich, wie entscheidend die Kontrolle über digitale Prozesse ist. Die easy software AG beleuchtet, welche Rolle das Dokumentenmanagement dabei spielt - und worauf es jetzt ankommt.

  • MDR - meist mehr Schein als Sein

    Managed Detection and Response (MDR) ist der neue Hype der IT-Sicherheitsbranche. Kaum ein Systemhaus, das nicht plötzlich MDR im Portfolio hat. Was sich hinter diesem Label verbirgt, ist oft enttäuschend: vollautomatisierte EDR- oder XDR-Lösungen mit dem Etikett "Managed", das in Wahrheit kaum mehr bedeutet, als dass ein Dienstleister Herstellerlösungen lizenziert - nicht aber selbst Verantwortung übernimmt.

  • Einblicke in die Sichtweise der Kunden

    Online-Händler erhalten täglich eine unzählige Menge an Anfragen. Ein Großteil davon wird mit KI-Agenten gelöst, da sie immer wieder ähnliche Themen wie Lieferzeiten, Rücksendungen oder Produktspezifikationen betreffen. Zum einen sind KI-Agenten damit eine Arbeitserleichterung bei wiederkehrenden Anfragen, besonders wenn diese Lösungen einfach zu bedienen sind, und den Unternehmen schnellen Mehrwert bieten. Doch hinter diesen Wiederholungen verbirgt sich zum anderen auch eine bislang oft ungenutzte Quelle strategischer Erkenntnisse: die Daten, die bei jeder einzelnen Interaktion entstehen.

  • Modernisierung birgt auch ein Risiko

    Der Trend zur Cloud-Migration setzt Vermögensverwalter zunehmend unter Druck, ihre digitale Transformation voranzutreiben. Einer der strategischen Pfeiler einer Cloud-Strategie ist dabei der Wechsel von On-Premise- zu SaaS-Lösungen. Für größere, traditionelle Institutionen stellt sich jedoch die Frage: Sollten sie direkt auf SaaS umsteigen oder lieber einen mehrstufigen Ansatz über PaaS wählen? Alberto Cuccu, COO von Objectway, erklärt, warum ein schrittweiser Migrationsprozess für bestimmte Geschäftsfälle eine sinnvolle Option sein kann, welche Rolle DORA dabei spielt und welche typischen Fehler Banken bei ihrer IT-Transformation machen.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen