Sie sind hier: Startseite » Markt » Tipps und Hinweise

Implementierung von Big Data-Technologien


Fünf Best Practices für einen erfolgreichen Einsatz von Big Data
Checkliste die fünf wichtigsten Erfolgsfaktoren bei der Einführung von Big Data – beispielsweise auf Basis von Hadoop oder NoSQL-Datenbanken


Viele Aspekte beeinflussen die Entscheidung, vorhandene IT-Systemlandschaften funktional weiter auszubauen und zu modernisieren. Big Data-Umgebungen etwa bieten eine hohe Flexibilität und Skalierbarkeit, um sehr große Datenmengen kosteneffizient zu erfassen und auszuwerten. Die Einführung von NoSQL-Datenbanken oder Hadoop, als typische Vertreter von Big Data-Umgebungen, ist oft der Anlass für eine evolutionäre Weiterentwicklung der eingesetzten Applikationen. Progress erläutert fünf Best Practices, die sich bei der Implementierung von Big Data-Projekten bereits bewährt haben.

1. Die Ziele eines Geschäftsprozesses verstehen.
Entsprechen langjährig genutzte Applikationen nicht mehr den Leistungserwartungen, entsteht schnell der Wunsch einer Migration auf ein anderes aktuelles Betriebssystem oder zumindest nach einer versionsmäßigen Erneuerung. Die geplante Einführung von Big Data-Technologie sollte Anlass sein, zunächst einmal zu prüfen, ob und wie eine Applikation aktuell die Anforderungen der Anwender im Rahmen eines bestimmten Geschäftsprozesses unterstützt. In vielen Fällen bietet die Integration von Big Data-Technologien zusätzliche Möglichkeiten, die betriebswirtschaftlichen Ziele einer Applikation genauer, schneller und umfassender zu erreichen.

2. Die benötigten Datenquellen ermitteln.
Die Kenntnis der Ziele eines Geschäftsprozesses bietet eine gute Grundlage für eine bessere Beurteilung der dafür benötigten Daten und der Skalierbarkeit. Die Einführung von Big Data-Technologien sollte daher auch als Anlass zu einer Ermittlung zusätzlicher Datenquellen dienen, mit denen sich die Effizienz von Geschäftsprozessen steigern lässt. Eine Applikation zur Analyse des Kundenverhaltens profitiert beispielsweise von Daten der Verkaufshistorie, von Daten aus dem Customer Service, von vorhandenen oder neu zu erstellenden Kundenprofilen oder der Auswertung von Social Media-Aktivitäten und -Kommentaren.

3. Überprüfbare Performancekriterien definieren.
Bei Big Data geht es immer um eine Leistungssteigerung, sei es eine schnellere Verarbeitung, die Einbeziehung größerer Datenmengen oder detailliertere Datenanalysen. Die Festlegung von Performancewerten ermöglicht einen Soll-Ist-Vergleich und ein frühzeitiges Gegensteuern bei Abweichungen. Das betrifft etwa schnellere Zugriffszeiten auf Daten oder die Unterstützung einer größeren Zahl gleichzeitiger Benutzer.

4. Skalierbarkeit berücksichtigen.
Die Anforderung nach einer höheren Performance ist eng mit der Skalierbarkeit verbunden. Bei allen Überlegungen zur Verbesserung der Performance müssen auch die Auswirkungen auf die Skalierbarkeit beachtet werden. Theoretisch heißt "linear skalierbar", dass sich bei einer Verdopplung der CPU-Leistung oder der Speicherkapazität auch die doppelte Performance ergibt. In der Praxis hat die Skalierung der Speicherkapazität mehrere Dimensionen.

Auch die physischen Speichersysteme zur Steuerung der einzelnen Festplatten und die CPU-Leistung müssen beispielsweise ausgebaut werden. Der weitere Ausbau erfordert daher eine Kostenanalyse der einzelnen Komponenten, um die angestrebte Performance betriebswirtschaftlich rechtfertigen zu können.

5. Den Bedarf an Datenintegration bewerten.
Eine Steigerung der Performance und Skalierbarkeit bei einem wachsenden Datenvolumen sowie eine Berücksichtigung diverser Datentypen bedeuten gleichzeitig höhere Anforderungen bei der Datenintegration. In vielen Fällen hat es sich bewährt, in kleinen bis mittelgroßen Big Data-Projekten die Datenintegration zu erproben sowie die damit verbundenen Prozesse und Architekturen zu etablieren, die dann auch auf größere Projekte übertragen werden können.

Die Integration der Daten in eine Big Data-Umgebung ist die eine Seite der Medaille, auch der umgekehrte Zugang sollte bedacht werden. Es sollte auch ein standardisierter Zugriff auf NoSQL-Datenbanken und eine Hadoop-Umgebung sichergestellt sein, damit Big Data-Analysen auch von den vorhandenen Applikationen genutzt werden können.

"Bei der Implementierung von Big Data-Technologien geht es immer um strategische Entscheidungen, von denen viele Geschäftsprozesse und Fachbereiche eines Unternehmens profitieren", sagt Olf Jännsch, Regional Vice President Central and Eastern Europe bei Progress. "Um eine hohe Flexibilität zu erzielen, sollten die eingesetzten Technologien strukturierte und unstrukturierte Daten unterstützen, eine hohe Verfügbarkeit bieten und plattformunabhängig einsetzbar sein – On-Premise, in der Cloud und in hybriden Architekturen. Sie bieten damit gleichzeitig einen wichtigen Hebel zur weiteren Modernisierung der langjährig genutzten Applikationslandschaften." (Progress: ra)

eingetragen: 11.09.16
Home & Newsletterlauf: 21.09.16

Progress Software: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>


Meldungen: Tipps und Hinweise

  • Optimale Wissensspeicher

    Graphdatenbanken sind leistungsstarke Werkzeuge, um komplexe Daten-Beziehungen darzustellen und vernetzte Informationen schnell zu analysieren. Doch jeder Datenbanktyp hat spezifische Eigenschaften und eignet sich für andere Anwendungsfälle. Welche Graphdatenbank ist also wann die richtige? Aerospike empfiehlt Unternehmen, ihre Anforderungen unter vier Gesichtspunkten zu prüfen.

  • Zugang zu anfälligen Cloud-Hosts

    Zwischen 2023 und 2024 haben laut einer aktuellen Studie 79 Prozent der Finanzeinrichtungen weltweit mindestens einen Cyberangriff identifiziert (2023: 68 Prozent). Hierzulande berichtet die BaFin, dass 2023 235 Meldungen über schwerwiegende IT-Probleme eingegangen sind. Fünf Prozent davon gehen auf die Kappe von Cyberangreifern.

  • Wachsende SaaS-Bedrohungen

    Die jüngsten Enthüllungen über den massiven Cyberangriff von Salt Typhoon auf globale Telekommunikationsnetzwerke sind eine deutliche Erinnerung an die sich entwickelnde und ausgeklügelte Natur von Cyberbedrohungen. Während die Angreifer sich darauf konzentrierten, Kommunikation abzufangen und sensible Daten zu entwenden, werfen ihre Handlungen ein Schlaglicht auf ein umfassenderes, dringenderes Problem: die Unzulänglichkeit traditioneller Datensicherungsmethoden beim Schutz kritischer Infrastrukturen.

  • Einführung des Zero-Trust-Frameworks

    Die Cyber-Sicherheit entwickelt sich mit rasanter Geschwindigkeit, weshalb eine traditionelle Verteidigung den Anforderungen nicht mehr gerecht wird. Moderne Cyber-Bedrohungen bewegen sich inzwischen mühelos seitlich innerhalb von Netzwerken und nutzen Schwachstellen aus, die mit traditionellen Perimeter-Schutzmaßnahmen nicht vollständig behoben werden können.

  • Leitfaden für eine erfolgreiche DRaaS-Auswahl

    Investitionen in DRaaS (Disaster-Recovery-as-a-Service) sind sinnvoll und zukunftsweisend, denn DRaaS hilft den Unternehmen, ihre IT-Systeme und Daten im Fall eines Datenverlusts schnell wiederherzustellen. Allerdings sollte man im Vorfeld eine gründliche Marktanalyse durchführen und sich über die Funktionsweise und Kosten der verschiedenen Lösungen informieren.

  • ERP-Software muss ein Teamplayer sein

    So wichtig ERP-Systeme auch sind, bei der Auswahl der richtigen Lösung und Anbieter gibt es für Unternehmen eine Reihe von Aspekten zu beachten - schließlich bringen nur passgenaue und ausgereifte Systeme auch die erwünschten Vorteile. IFS erklärt, worauf es bei der Suche ankommt.

  • Grundlage für zukunftssichere Rechenzentren

    Rechenzentren sind das Rückgrat unserer digitalen Welt. Betreiber dieser Infrastrukturen stehen dabei vor immensen Herausforderungen: Sie müssen nicht nur den ununterbrochenen Betrieb und höchste Sicherheitsstandards sicherstellen, sondern auch strengere Umwelt- und Effizienzkriterien einhalten.

  • Cloud-basierte Tests

    Mit der Digitalisierung steigt das Datenvolumen und der Energieverbrauch. Daher stehen Unternehmen jetzt vor der Herausforderung, ihre IT nachhaltiger zu gestalten. Auch das Qualitätsmanagement kann dazu einen wertvollen Beitrag leisten, indem es den CO2-Fußabdruck von Software verringert.

  • Was ist der richtige Cloud-Speicher für KMU?

    Verschiedene Arten von Unternehmen haben unterschiedliche IT-Anforderungen. So haben kleine und mittelständische Unternehmen natürlich nicht die gleichen Anforderungen wie große internationale Unternehmen.

  • ITAM on-premises versus Software-as-a-Service

    IT Asset Management (ITAM) schafft die Basis für Cybersecurity, Kostenkontrolle und effizientes IT-Management. Doch vor allem im Mittelstand fehlen häufig Manpower und Expertise, eine ITAM-Lösung inhouse zu betreiben. Software-as-a-Service-Angebote versprechen Abhilfe.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen