Sie sind hier: Startseite » Markt » Tipps und Hinweise

Ursachen für das Scheitern von Cloud-Migrationen


So werden Datenbanken fit für die Cloud: Best Practices für die Migration
Zuverlässige Dokumentation erleichtert den Wechsel in die Cloud


Von Kevin Kline, Principal Program Manager bei SentryOne

Die Digitalisierung führt in Unternehmen zu einem beispiellos hohen Datenaufkommen. SQL Server-Datenbanken aus Microsoft Azure oder Amazon Web Services (AWS) zu betreiben, sehen viele Unternehmen daher als geeigneten Weg an, um angesichts wachsender Datenflut und komplexeren Analyseanforderungen Performanz und Leistung der IT sicherstellen zu können. Die anfängliche Hoffnung, durch den Wechsel in die Cloud kosteneffizienter arbeiten zu können, erfüllt sich für manche allerdings nicht. Eine bedeutende Ursache dafür könnte darin bestehen, dass Datenbestände vorab nicht für die neue Cloud Computing-Umgebung optimiert wurden. Die Migration sollte deshalb erst nach eingehender Vorbereitung vollzogen werden.

Bei der Migration in die Cloud verhält es sich ähnlich wie bei einem Wohnungsumzug: Während man Regale ausräumt und seine Besitztümer in Augenschein nimmt, tauchen Gegenstände auf, von denen man sich gar nicht mehr bewusst war, dass man sie besitzt. Die Frage, die sich dabei unweigerlich aufdrängt, ist: Hat der gesamte Hausstand in der neuen Wohnung noch Relevanz? Oder ist der Zeitpunkt gekommen, einige Bestandteile auszusortieren?

Dieses Phänomen lässt sich ebenso auf die Migration von SQL Server Datenbanken in die Cloud übertragen. Da in der neuen Umgebung andere Gesetzmäßigkeiten gelten als on-Premises, sollten einem reibungslosen Umzug entsprechende Aufräumarbeiten im Datenbestand vorausgehen. Dazu müssen Datenbank-Administratoren (DBAs) vor allem einen Überblick darüber gewinnen, auf welche Weise alle Datenbanken mit den verbundenen Anwendungen interagieren. So können sie unnötiges Durcheinander in ihren Datensätzen bereinigen und falls nötig, Codes überarbeiten. Der Migration sollte daher ein zweistufiger Prozess vorangehen, der sich aus einer Evaluations- sowie Prüfungsphase zusammensetzt.

Evaluationsphase: Datenauswahl für die Migration
Zu den häufigsten Ursachen für das Scheitern von Cloud-Migrationen gehören zu hohe Kosten. Dies lässt sich in vielen Fällen darauf zurückführen, dass das neue Tarifmodell der Cloud nicht ausreichend berücksichtigt wurde. Ungenutzte Daten, deren Menge im on-premises-Betrieb weitgehend unerheblich ist, können in der Cloud, wo der Tarif durch CPU, Storage und IOPs bestimmt wird, das Budget spürbar belasten. Eine umfangreiche Bewertung vorab hingegen trägt dazu bei, dass die neue Umgebung möglichst effizient genutzt wird. Dafür empfiehlt es sich, sämtliche Bestandsdatensätze zu ermitteln und nacheinander drei Kategorien – Bereinigung, Archivierung, Migration – zuzuordnen.

1. Bereinigung
Große Mengen an Junk-Daten oder Datensätze, die schlichtweg nicht mehr von Nutzen sind, eignen sich für die Bereinigung vor einer Cloud-Migration. In diese Kategorie fallen beispielsweise Daten, die in der Vergangenheit angefallen, jedoch von minderer Qualität sind und lediglich aus rechtlichen Gründen gespeichert werden mussten. Sofern der gesetzlich vorgeschriebene Zeitraum verstrichen ist, können diese nun gelöscht werden. Handelt es sich um personenbezogene Daten, sollte der Datenbestand auch unter Berücksichtigung der DSGVO betrachtet werden. Diese schreibt vor, dass Daten lediglich so lange gespeichert werden dürfen, wie es für die Verarbeitung nötig ist.

2. Archivierung
Im Zuge ihrer Ermittlungen können DBAs auch auf den umgekehrten Fall stoßen: Es gibt einige Datensätze, die zwar veraltet sind, für gegenwärtige und künftige Trendanalysen jedoch eine geeignete Qualität aufweisen. Hier empfiehlt es sich, die Daten weiterhin lediglich schreibgeschützt zu nutzen. Ist beispielsweise die Migration in Microsoft Azure geplant, können diese einfach über eine SQL Stretch-Datenbank in eine vergleichsweise kostengünstigere Speicherebene verschoben werden. Die Daten stehen dort weiterhin schreibgeschützt zur Verfügung und können nach Bedarf für Business Intelligence-Operationen, zur Anwendung von KI- oder Machine Learning-Funktionen sowie für das Erstellen prädiktiver Analysen abgerufen werden.

3. Migration
Nachdem die zu bereinigenden und archivierenden Daten identifiziert sind, hat sich die Menge der Daten, die sich für die Migration eignen, automatisch gebildet. Diese stammen zwar aus lokalen Produktionssystemen, doch dies bedeutet nicht, dass sie sich direkt in ein cloudbasiertes Produktionssystem übertragen lassen. Um möglichen Beschwerden seitens der Nutzer, ihre Reports würden seit der Migration keinen Sinn mehr ergeben, vorzubeugen, müssen diese Daten im nächsten Schritt einer eingehenden Qualitätsprüfung unterzogen werden.

Prüfungsphase: Qualitätscheck für Datenbanken
Da während eines Migrationsprozesses an Anwendungen und Datenbanken keinerlei Änderungen vorgenommen werden sollten, gilt es, sämtliche Eigenschaften, die einer soliden Performanz entgegenstehen, zu eliminieren. Um für ein reibungsloses Zusammenspiel zwischen Anwendungs- und Datenbankebene sorgen zu können, sind zusätzliche Qualitätsprüfungen nötig. Dabei sollten folgende Punkte sichergestellt werden:

• >> Konsistente Namensstandards für Objekte wie Tabellen, Views, Trigger, Stored Procedures und User-Defined Functions (UDFs).
• >> Keine Verwendung übergroßer Spalten, zum Beispiel CHAR(500), sofern keiner der darin enthaltenen Werte 32 Zeichen übersteigt.
• >> GUIDs (Globally Unique Identifiers) werden nicht als Clustered-Indizes genutzt. Dies ist lediglich bei kleinen Tabellen, die nicht mehr erweitert werden, zulässig. Außerdem muss überprüft werden, ob GUIDs als Cluster-Primärschlüssel genutzt werden, da dies zahlreiche Performanzprobleme verursachen kann.
• >> Es gibt keine Datentypen, die als MAX-Größe definiert sind, wie beispielsweise NVARCHAR(MAX).
• >> Es bestehen keine impliziten Konvertierungen, da diese schwerwiegende Codeprobleme nach sich ziehen können. Insbesondere, wenn Object Relational Mapping (ORM)-Tools genutzt werden, sind Konvertierungsprobleme wahrscheinlicher, da ORMs meist standardmäßig GUIDs als Cluster-Indizes einsetzen.

Weiterhin sollte die Codierung der Anfrage-Timeouts noch einmal unter die Lupe genommen werden. Treten bereits in der on-premises-Umgebung bei bestimmten Abfragen Server-Zeitüberschreitungen auf, werden sich diese in der Cloud noch verstärken. Um dies zu verhindern, sollte der Code so überarbeitet werden, dass er in der Cloud gegenüber Anfrage-Timeouts belastbarer ist und die damit verbundenen Anfragen entsprechend optimiert werden.

Eine weitere notwendige, aber in Einzelfällen womöglich schmerzvolle Aufgabe, ist die Beurteilung und Überprüfung liebgewonnener Funktionen, wie zum Beispiel das Erstellen temporärer Tabellen. Während derartige Features gern genutzt werden, um die Logik der Codierung zu verbessern, wirken sich nur wenige von ihnen günstig auf die Performanz aus. Um in der Cloud keine bösen Überraschungen zu erleben, sollte man für die am häufigsten genutzten Datenbankfunktionen einen Test einplanen.

Im Großen und Ganzen erfordert der Schritt in die Cloud nichts weniger als das Erstellen einer umfassenden Dokumentation auf Grundlage eines Datenkatalogs. Um nicht nach der Migration feststellen zu müssen, dass Anwendungen und Nutzern sprichwörtlich der Boden unter den Füßen weggezogen wurde, muss eine weitere Stufe ergänzt werden: Es muss zusätzlich verzeichnet werden, welche Anwendungen auf die im Katalog erfassten Daten zugreifen. Dies erscheint DBAs zwar ähnlich unliebsam wie sich bei einem Wohnungsumzug mit längst vergessenen Dingen auseinandersetzen zu müssen, ist aber in dieser Situation ebenso unerlässlich. Um den Dokumentationsprozess zu vereinfachen, lohnt sich der Einsatz entsprechender Managementtools, die unter anderem automatisiert eine ausführliche Übersicht der Datenherkunft erstellen können. Auf diese Weise können geeignete Voraussetzungen für eine reibungslose Migration und eine effiziente Cloud-Nutzung geschaffen werden. (SentryOne: ra)

eingetragen: 12.05.20
Newsletterlauf: 28.07.20

SentyOne: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Mythos der maßgeschneiderten Entwicklung

    Der gezielte und flexible Einsatz von Technologie ist ein zentraler Erfolgsfaktor für Unternehmen. Digitalisierung ist für viele Unternehmen weiterhin eine Priorität, der sie eine substantielle Menge an Ausgaben einräumen: Einem Bericht des IDC zufolge, werden die weltweiten Investitionen in IT-Transformationsinitiativen voraussichtlich 4 Billionen US-Dollar bis 2027 übersteigen. Jedoch erreichen weniger als die Hälfte (48?Prozent) aller Digitalisierungsprojekte die angestrebten Ziele. Laut McKinsey scheitern sogar sieben von zehn Unternehmenstransformationen.

  • Migration in lokale Cloud-Rechenzentren

    Digitale Souveränität in und mit der Cloud - dafür sind Unternehmen gefordert, die entscheidenden Weichen zu stellen. Aus der Projekterfahrung von Yorizon, Vorreiterin für Open Source Edge-Cloud-Services, sind es fünf entscheidende Faktoren, die eine unabhängige und zukunftsfähige Cloud-Strategie sicherstellen.

  • Agentische KI im Retail-Bereich

    KI revolutioniert wie wir Ideen und Produkte entwickeln, Handel treiben und Informationen sammeln. Die menschliche Genialität bekommt dabei einen Kompagnon: die KI. Doch obwohl die generative KI häufig den größten Hype erzeugt, wird es die agentische KI sein, die Händlern den größten Nutzen bringt.

  • IT-Resilienz als Überlebensfaktor

    Angesichts der vom Bundesamt für Sicherheit in der Informationstechnik als "besorgniserregend" eingestuften Cybersicherheitslage gewinnen automatisierte Ansätze für die Stärkung der IT-Resilienz zunehmend an Bedeutung, wie aktuelle Implementierungen zeigen.

  • Backup-Lücke von Microsoft 365

    Unternehmen nutzen Microsoft 365 als Grundlage für ihre Produktivität. Doch neben den Vorteilen solcher Produktivitätsplattformen wird immer wieder eine Lücke in der Datenschutzstrategie übersehen: das Prinzip der geteilten Verantwortung. Diese Nachlässigkeit setzt wichtige Geschäftsinformationen erheblichen Risiken aus, die sich in Ausfallzeiten und wirtschaftlichen Verlusten niederschlagen können.

  • KI und digitale Souveränität

    Die europaweite Debatte rund um digitale Souveränität fokussiert sich in den vergangenen Wochen überwiegend auf das Thema "KI" (AI-Gigafactory etc.). Dabei gerät ein anderer Aspekt gerade etwas in den Hintergrund: Cyberresilienz und die Kontrolle über kritische Daten innerhalb Europas.

  • DMS und digitale Souveränität

    Die Welt ordnet sich neu und Europa steht unter wachsendem Druck, seine digitale Unabhängigkeit zu stärken. Laut einer Bitkom-Studie (2025) fordern 84 Prozent der Unternehmen, dass die neue Bundesregierung der digitalen Souveränität höchste Priorität einräumt. Gerade im Umgang mit vertraulichen Dokumenten und geschäftskritischen Informationen zeigt sich, wie entscheidend die Kontrolle über digitale Prozesse ist. Die easy software AG beleuchtet, welche Rolle das Dokumentenmanagement dabei spielt - und worauf es jetzt ankommt.

  • MDR - meist mehr Schein als Sein

    Managed Detection and Response (MDR) ist der neue Hype der IT-Sicherheitsbranche. Kaum ein Systemhaus, das nicht plötzlich MDR im Portfolio hat. Was sich hinter diesem Label verbirgt, ist oft enttäuschend: vollautomatisierte EDR- oder XDR-Lösungen mit dem Etikett "Managed", das in Wahrheit kaum mehr bedeutet, als dass ein Dienstleister Herstellerlösungen lizenziert - nicht aber selbst Verantwortung übernimmt.

  • Einblicke in die Sichtweise der Kunden

    Online-Händler erhalten täglich eine unzählige Menge an Anfragen. Ein Großteil davon wird mit KI-Agenten gelöst, da sie immer wieder ähnliche Themen wie Lieferzeiten, Rücksendungen oder Produktspezifikationen betreffen. Zum einen sind KI-Agenten damit eine Arbeitserleichterung bei wiederkehrenden Anfragen, besonders wenn diese Lösungen einfach zu bedienen sind, und den Unternehmen schnellen Mehrwert bieten. Doch hinter diesen Wiederholungen verbirgt sich zum anderen auch eine bislang oft ungenutzte Quelle strategischer Erkenntnisse: die Daten, die bei jeder einzelnen Interaktion entstehen.

  • Modernisierung birgt auch ein Risiko

    Der Trend zur Cloud-Migration setzt Vermögensverwalter zunehmend unter Druck, ihre digitale Transformation voranzutreiben. Einer der strategischen Pfeiler einer Cloud-Strategie ist dabei der Wechsel von On-Premise- zu SaaS-Lösungen. Für größere, traditionelle Institutionen stellt sich jedoch die Frage: Sollten sie direkt auf SaaS umsteigen oder lieber einen mehrstufigen Ansatz über PaaS wählen? Alberto Cuccu, COO von Objectway, erklärt, warum ein schrittweiser Migrationsprozess für bestimmte Geschäftsfälle eine sinnvolle Option sein kann, welche Rolle DORA dabei spielt und welche typischen Fehler Banken bei ihrer IT-Transformation machen.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen