Sie sind hier: Startseite » Markt » Tipps und Hinweise

Ursachen für das Scheitern von Cloud-Migrationen


So werden Datenbanken fit für die Cloud: Best Practices für die Migration
Zuverlässige Dokumentation erleichtert den Wechsel in die Cloud


Von Kevin Kline, Principal Program Manager bei SentryOne

Die Digitalisierung führt in Unternehmen zu einem beispiellos hohen Datenaufkommen. SQL Server-Datenbanken aus Microsoft Azure oder Amazon Web Services (AWS) zu betreiben, sehen viele Unternehmen daher als geeigneten Weg an, um angesichts wachsender Datenflut und komplexeren Analyseanforderungen Performanz und Leistung der IT sicherstellen zu können. Die anfängliche Hoffnung, durch den Wechsel in die Cloud kosteneffizienter arbeiten zu können, erfüllt sich für manche allerdings nicht. Eine bedeutende Ursache dafür könnte darin bestehen, dass Datenbestände vorab nicht für die neue Cloud Computing-Umgebung optimiert wurden. Die Migration sollte deshalb erst nach eingehender Vorbereitung vollzogen werden.

Bei der Migration in die Cloud verhält es sich ähnlich wie bei einem Wohnungsumzug: Während man Regale ausräumt und seine Besitztümer in Augenschein nimmt, tauchen Gegenstände auf, von denen man sich gar nicht mehr bewusst war, dass man sie besitzt. Die Frage, die sich dabei unweigerlich aufdrängt, ist: Hat der gesamte Hausstand in der neuen Wohnung noch Relevanz? Oder ist der Zeitpunkt gekommen, einige Bestandteile auszusortieren?

Dieses Phänomen lässt sich ebenso auf die Migration von SQL Server Datenbanken in die Cloud übertragen. Da in der neuen Umgebung andere Gesetzmäßigkeiten gelten als on-Premises, sollten einem reibungslosen Umzug entsprechende Aufräumarbeiten im Datenbestand vorausgehen. Dazu müssen Datenbank-Administratoren (DBAs) vor allem einen Überblick darüber gewinnen, auf welche Weise alle Datenbanken mit den verbundenen Anwendungen interagieren. So können sie unnötiges Durcheinander in ihren Datensätzen bereinigen und falls nötig, Codes überarbeiten. Der Migration sollte daher ein zweistufiger Prozess vorangehen, der sich aus einer Evaluations- sowie Prüfungsphase zusammensetzt.

Evaluationsphase: Datenauswahl für die Migration
Zu den häufigsten Ursachen für das Scheitern von Cloud-Migrationen gehören zu hohe Kosten. Dies lässt sich in vielen Fällen darauf zurückführen, dass das neue Tarifmodell der Cloud nicht ausreichend berücksichtigt wurde. Ungenutzte Daten, deren Menge im on-premises-Betrieb weitgehend unerheblich ist, können in der Cloud, wo der Tarif durch CPU, Storage und IOPs bestimmt wird, das Budget spürbar belasten. Eine umfangreiche Bewertung vorab hingegen trägt dazu bei, dass die neue Umgebung möglichst effizient genutzt wird. Dafür empfiehlt es sich, sämtliche Bestandsdatensätze zu ermitteln und nacheinander drei Kategorien – Bereinigung, Archivierung, Migration – zuzuordnen.

1. Bereinigung
Große Mengen an Junk-Daten oder Datensätze, die schlichtweg nicht mehr von Nutzen sind, eignen sich für die Bereinigung vor einer Cloud-Migration. In diese Kategorie fallen beispielsweise Daten, die in der Vergangenheit angefallen, jedoch von minderer Qualität sind und lediglich aus rechtlichen Gründen gespeichert werden mussten. Sofern der gesetzlich vorgeschriebene Zeitraum verstrichen ist, können diese nun gelöscht werden. Handelt es sich um personenbezogene Daten, sollte der Datenbestand auch unter Berücksichtigung der DSGVO betrachtet werden. Diese schreibt vor, dass Daten lediglich so lange gespeichert werden dürfen, wie es für die Verarbeitung nötig ist.

2. Archivierung
Im Zuge ihrer Ermittlungen können DBAs auch auf den umgekehrten Fall stoßen: Es gibt einige Datensätze, die zwar veraltet sind, für gegenwärtige und künftige Trendanalysen jedoch eine geeignete Qualität aufweisen. Hier empfiehlt es sich, die Daten weiterhin lediglich schreibgeschützt zu nutzen. Ist beispielsweise die Migration in Microsoft Azure geplant, können diese einfach über eine SQL Stretch-Datenbank in eine vergleichsweise kostengünstigere Speicherebene verschoben werden. Die Daten stehen dort weiterhin schreibgeschützt zur Verfügung und können nach Bedarf für Business Intelligence-Operationen, zur Anwendung von KI- oder Machine Learning-Funktionen sowie für das Erstellen prädiktiver Analysen abgerufen werden.

3. Migration
Nachdem die zu bereinigenden und archivierenden Daten identifiziert sind, hat sich die Menge der Daten, die sich für die Migration eignen, automatisch gebildet. Diese stammen zwar aus lokalen Produktionssystemen, doch dies bedeutet nicht, dass sie sich direkt in ein cloudbasiertes Produktionssystem übertragen lassen. Um möglichen Beschwerden seitens der Nutzer, ihre Reports würden seit der Migration keinen Sinn mehr ergeben, vorzubeugen, müssen diese Daten im nächsten Schritt einer eingehenden Qualitätsprüfung unterzogen werden.

Prüfungsphase: Qualitätscheck für Datenbanken
Da während eines Migrationsprozesses an Anwendungen und Datenbanken keinerlei Änderungen vorgenommen werden sollten, gilt es, sämtliche Eigenschaften, die einer soliden Performanz entgegenstehen, zu eliminieren. Um für ein reibungsloses Zusammenspiel zwischen Anwendungs- und Datenbankebene sorgen zu können, sind zusätzliche Qualitätsprüfungen nötig. Dabei sollten folgende Punkte sichergestellt werden:

• >> Konsistente Namensstandards für Objekte wie Tabellen, Views, Trigger, Stored Procedures und User-Defined Functions (UDFs).
• >> Keine Verwendung übergroßer Spalten, zum Beispiel CHAR(500), sofern keiner der darin enthaltenen Werte 32 Zeichen übersteigt.
• >> GUIDs (Globally Unique Identifiers) werden nicht als Clustered-Indizes genutzt. Dies ist lediglich bei kleinen Tabellen, die nicht mehr erweitert werden, zulässig. Außerdem muss überprüft werden, ob GUIDs als Cluster-Primärschlüssel genutzt werden, da dies zahlreiche Performanzprobleme verursachen kann.
• >> Es gibt keine Datentypen, die als MAX-Größe definiert sind, wie beispielsweise NVARCHAR(MAX).
• >> Es bestehen keine impliziten Konvertierungen, da diese schwerwiegende Codeprobleme nach sich ziehen können. Insbesondere, wenn Object Relational Mapping (ORM)-Tools genutzt werden, sind Konvertierungsprobleme wahrscheinlicher, da ORMs meist standardmäßig GUIDs als Cluster-Indizes einsetzen.

Weiterhin sollte die Codierung der Anfrage-Timeouts noch einmal unter die Lupe genommen werden. Treten bereits in der on-premises-Umgebung bei bestimmten Abfragen Server-Zeitüberschreitungen auf, werden sich diese in der Cloud noch verstärken. Um dies zu verhindern, sollte der Code so überarbeitet werden, dass er in der Cloud gegenüber Anfrage-Timeouts belastbarer ist und die damit verbundenen Anfragen entsprechend optimiert werden.

Eine weitere notwendige, aber in Einzelfällen womöglich schmerzvolle Aufgabe, ist die Beurteilung und Überprüfung liebgewonnener Funktionen, wie zum Beispiel das Erstellen temporärer Tabellen. Während derartige Features gern genutzt werden, um die Logik der Codierung zu verbessern, wirken sich nur wenige von ihnen günstig auf die Performanz aus. Um in der Cloud keine bösen Überraschungen zu erleben, sollte man für die am häufigsten genutzten Datenbankfunktionen einen Test einplanen.

Im Großen und Ganzen erfordert der Schritt in die Cloud nichts weniger als das Erstellen einer umfassenden Dokumentation auf Grundlage eines Datenkatalogs. Um nicht nach der Migration feststellen zu müssen, dass Anwendungen und Nutzern sprichwörtlich der Boden unter den Füßen weggezogen wurde, muss eine weitere Stufe ergänzt werden: Es muss zusätzlich verzeichnet werden, welche Anwendungen auf die im Katalog erfassten Daten zugreifen. Dies erscheint DBAs zwar ähnlich unliebsam wie sich bei einem Wohnungsumzug mit längst vergessenen Dingen auseinandersetzen zu müssen, ist aber in dieser Situation ebenso unerlässlich. Um den Dokumentationsprozess zu vereinfachen, lohnt sich der Einsatz entsprechender Managementtools, die unter anderem automatisiert eine ausführliche Übersicht der Datenherkunft erstellen können. Auf diese Weise können geeignete Voraussetzungen für eine reibungslose Migration und eine effiziente Cloud-Nutzung geschaffen werden. (SentryOne: ra)

eingetragen: 12.05.20
Newsletterlauf: 28.07.20

SentyOne: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Was Unternehmen beachten müssen

    Künstliche Intelligenz gehört für immer mehr Unternehmen ganz selbstverständlich zum Geschäftsalltag dazu. Insbesondere die generative KI (GenAI) erlebt einen Boom, den sich viele so nicht vorstellen konnten. GenAI-Modelle sind jedoch enorm ressourcenhungrig, sodass sich Firmen Gedanken über die Infrastruktur machen müssen. NTT DATA, ein weltweit führender Anbieter von digitalen Business- und Technologie-Services, zeigt, warum die Cloud der Gamechanger für generative KI ist.

  • SAP mit umfassender Cloud-Strategie

    Für die digitale Transformation von Unternehmen setzt SAP auf eine umfassende Cloud-Strategie. Hier bietet SAP verschiedene Lösungen an. Neben der SAP Public Cloud, die sehr stark auf den SME-Markt zielt, bedient die Industry Cloud als Kombination aus Private Cloud und industriespezifischen Cloud-Lösungen eher den LE-Markt.

  • Warum steigende IT-Kosten das kleinere Übel sind

    Es gibt Zeiten, in denen sind CIOs wirklich nicht zu beneiden. Zum Beispiel dann, wenn sie der Unternehmensführung wieder einmal erklären müssen, warum erneut höhere Investitionen in die IT nötig sind. Eines der größten Paradoxe dabei: Kosten steigen auf dem Papier auch dann, wenn eigentlich aus Kostengründen modernisiert wird. Der Umstieg vom eigenen Server im Keller in die Cloud? Mehrkosten. Neue SaaS-Lösungen?

  • Optimierung von Java-Workloads in der Cloud

    Cloud-Infrastrukturen versprechen Skalierbarkeit, Effizienz und Kostenvorteile. Doch um Engpässe zu vermeiden, überprovisionieren viele Unternehmen ihre Cloud-Kapazitäten - und bezahlen so oftmals für Ressourcen, die sie gar nicht nutzen. Wie lässt sich das ändern? Ein zentraler Hebel ist die Optimierung von Java-Workloads in der Cloud. Cloud-Infrastrukturen bringen viele Vorteile, aber auch neue Komplexität und oft unerwartet hohe Kosten mit sich. Bei vielen Unternehmen nehmen Java-Umgebungen und -Anwendungen große Volumina in gebuchten Cloud-Kapazitäten ein, denn Java gehört noch immer zu den beliebtesten Programmiersprachen: Laut dem aktuellen State of Java Survey and Report 2025 von Azul geben 68 Prozent der Befragten an, dass über 50 Prozent ihrer Anwendungen mit Java entwickelt wurden oder auf einer JVM (Java Virtual Machine) laufen.

  • Wer Cloud sagt, muss Datensouveränität denken

    Die Cloud hat sich längst zu einem neuen IT-Standard entwickelt. Ihr Einsatz bringt allerdings neue Herausforderungen mit sich - insbesondere im Hinblick auf geopolitische Risiken und die Gefahr einseitiger Abhängigkeiten. Klar ist: Unternehmen, Behörden und Betreiber kritischer Infrastrukturen benötigen eine kompromisslose Datensouveränität. Materna Virtual Solution zeigt, welche zentralen Komponenten dabei entscheidend sind.

  • Fünf Mythen über Managed Services

    Managed Services sind ein Erfolgsmodell. Trotzdem existieren nach wie vor einige Vorbehalte gegenüber externen IT-Services. Die IT-Dienstleisterin CGI beschreibt die fünf hartnäckigsten Mythen und erklärt, warum diese längst überholt sind.

  • KI-Herausforderung: Mehr Daten, mehr Risiko

    Künstliche Intelligenz (KI) revolutioniert weiterhin die Geschäftswelt und hilft Unternehmen, Aufgaben zu automatisieren, Erkenntnisse zu gewinnen und Innovationen in großem Umfang voranzutreiben. Doch es bleiben Fragen offen, vor allem wenn es um die Art und Weise geht, wie KI-Lösungen Daten sicher verarbeiten und bewegen. Einem Bericht von McKinsey zufolge gehören Ungenauigkeiten in der KI sowie KI-Cybersecurity-Risiken zu den größten Sorgen von Mitarbeitern und Führungskräften.

  • Sichere Daten in der Sovereign Cloud

    Technologie steht im Mittelpunkt strategischer Ambitionen auf der ganzen Welt, aber ihr Erfolg hängt von mehr als nur ihren Fähigkeiten ab. Damit Dienste effektiv funktionieren, braucht es eine Vertrauensbasis, die den Erfolg dieser Technologie untermauert und eine verantwortungsvolle Speicherung der Daten, Anwendungen und Dienste gewährleistet.

  • Integration von Cloud-Infrastrukturen

    Cloud-Technologien werden zum Schlüsselfaktor für Wachstum und verbesserte Skalierbarkeit über das Kerngeschäft hinaus - auch bei Telekommunikationsanbietern (Telcos). Auch hier ist der Wandel zur Nutzung von Produkten und Dienstleistungen "On-Demand" im vollen Gange, sodass Telcos ihre Geschäftsmodelle weiterentwickeln und zunehmend als Managed-Service-Provider (MSPs) und Cloud-Service-Provider (CSPs) auftreten.

  • Acht Einsatzszenarien für Industrial AI

    Artificial Intelligence (AI) entwickelt sich zunehmend zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42?Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein - ein weiteres Drittel (35?Prozent) plant entsprechende Projekte.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen