Sie sind hier: Startseite » Markt » Tipps und Hinweise

Datenintegration zwischen Cloud & On-Premise-Daten


Drei Fehler, die man bei der Modernisierung von Business-Intelligence-Lösungen vermeiden sollte
Die Cloud ist der große Treiber hinter einer neuen Generation von Business-Intelligence-Anwendungen


Business Intelligence hat sich von großen Software-Monolithen, welche in der Vergangenheit ausschließlich von der IT kontrolliert wurden, zu einem agileren Tool-Set gewandelt. Eine große Rolle spielt dabei auch Nutzerfreundlichkeit durch ansprechende Visualisierung. Nicht umsonst sind Angebote wie Tableau, Qlik und andere am Markt sehr erfolgreich. Sollen solche Werkzeuge nachhaltig im Unternehmen etabliert werden, müssen Verantwortliche einiges beachten. Otto Neuer, Regional VP Sales bei Denodo, zeigt drei häufige Fehler und wie sich diese vermeiden lassen.

1. Fehlende Strategie für eine vollständige Integration heterogener Datenquellen
Unternehmen schöpfen ihre Daten heutzutage aus einer Vielzahl unterschiedlicher Quellen, um Informationen über neue Märkte, Kundenpräferenzen und vieles mehr zu sammeln. Moderne BI-Lösungen (Business Intelligence) kommen dabei mit unterschiedlichen Datenquellen zurecht, von traditionellen Datenbanken bis zu unstrukturierten Quellen.

Herkömmliche ETL-Prozesse stoßen dagegen bei der Menge und der Komplexität heutiger Daten schnell an ihre Grenzen. Das gleiche gilt auch für klassische Data Warehouses. Die Abhängigkeit von 20 Jahre alten, auf ETL-Prozessen basierenden Architekturen als Standarddatenintegration kann so die Möglichkeiten moderner BI-Lösungen einschränken. Solche veralteten Prozesse sind zeit- sowie ressourcenintensiv und beschränken Datenanbindung, -Verarbeitung und Bereitstellung. Heutige Anwendungsfälle wie Live Dashboards oder Mobile Apps lassen sich damit schwer umsetzen.

Die Nutzung von Data-Adaptern oder Connectors hat ebenfalls Schwächen. Die Punkt-zu-Punkt-Verbindungen, die bei dieser Methode zwischen einer Quelle und einem oder mehreren Zielen hergestellt wird, sind nur sehr aufwändig zu verwalten. Die dadurch entstehende gesteigerte Komplexität sorgt für eine höhere Fehleranfälligkeit. Beispielsweise kann es vorkommen, dass nicht jedes Reporting Tool Zugriff auf alle notwendigen Ressourcen hat. Das bedeutet, dass Anwender mehrere Tools nutzen müssen, die oft untereinander inkonsistente Ergebnisse liefern. Stattdessen sollten Unternehmen einen proaktiven automatisierten Ansatz verfolgen, um Integritätsprobleme schnell aufzudecken.

Um eine moderne BI-Plattform zu unterstützen, benötigen Unternehmen eine zeitgemäße Datenarchitektur, welche die Konnektivität mit einer Vielzahl von Datenquellen – strukturiert und unstrukturiert, relational und nicht-relational, On-Premise und in der Cloud – ermöglicht. Moderne Datenintegrationsansätze wie Datenvirtualisierung schaffen als Middleware eine Abstraktionsschicht, die den Zugriff auf alle Datenbestände unabhängig von Standort und Format erleichtert.

2. Keine Echtzeitanalysen
Das exponentielle Datenwachstum der letzten Jahre hat neben dem schieren Volumen an Information zu weiteren Herausforderungen geführt. Eine davon ist die Geschwindigkeit, mit der Daten heute entstehen. Zudem kommt ein Großteil des neuen Datenaufkommens aus unstrukturierten Quellen, dabei handelt es sich beispielsweise um Sensordaten, Bilder, Chats, Finanztransaktionen, etc. Die immer schnellere Frequenz, mit der Daten entstehen macht heute moderne und agile Methoden der Datenintegration notwendig.

Allerdings sieht die Realität in den meisten Unternehmen so aus, dass sie über in die Jahre gekommene Infrastrukturen verfügen, welche kein umfassendes Reporting in Echtzeit zulassen. Daher müssen alle Daten zunächst repliziert und in einem zentralen Repository aggregiert werden, bevor Analysten und Data Scientists diese nutzen können. Dieser Prozess behindert nicht nur den Echtzeitzugriff, sondern kann auch Duplikationen, Kontextverlust und erhöhte Latenz hervorrufen. Das größte Problem bei diesem Prozess: Die replizierten Daten sind selten völlig synchron mit dem Original und weisen eine gewisse Zeitverzögerung auf.

Wird stattdessen Datenvirtualisierung eingesetzt, verbleiben die Daten in ihrem ursprünglichen Kontext. Über einen Access Layer sind sie dennoch unmittelbar zugänglich. Die Datenquellen werden von den Anwendungen somit gewissermaßen abstrahiert. Zudem bietet Datenvirtualisierung einen ganzheitlichen Überblick über alle integrierten Daten, ohne dass Replikationen notwendig sind.

3. Mangelnde Integrationsfähigkeit von (hybriden) Multi-Cloud Umgebungen
Die Cloud ist der große Treiber hinter einer neuen Generation von Business-Intelligence-Anwendungen. Dennoch verfügen viele Unternehmen immer noch nicht über eine optimale Datenintegration zwischen Cloud und On-Premise-Daten. Ebenso kommen sie mit Deployments über mehrere Clouds hinweg schlecht zurecht. Cloud-Strategien für Business Intelligence sind oft auf ein einzelnes Deployment fokussiert und daher limitiert. Wenn Unternehmen ihre BI Deployments nicht von einem zentralen Punkt aus verwalten können, führt das zu einem ineffizienten Gesamtsystem. Damit haben Organisationen keine Möglichkeit, ein effektives Workload Balancing zu implementieren. Das heißt für die Verantwortlichen, sie müssen viel Zeit damit zubringen, den Daten Herr zu werden, anstatt sich auf ihr eigentliches Geschäft zu konzentrieren.

Erfolgreiche Datenanalyse für die Cloud benötigt heute eine agile Echtzeitintegration, die eine breite Varianz unterschiedlicher Datenquellen abdeckt. Für diese Anforderungen ist Datenvirtualisierung die ideale Lösung. Die Technologie macht Dateninfrastrukturen transparent und ermöglicht das Datenmanagement in hybriden Architekturen, welches den Zugriff sowohl von On-Premise-Systemen als auch von der Cloud zulässt. Gleichzeitig ist es möglich, Workflows zu automatisieren. Moderne Datenvirtualisierungslösungen nutzen Machine Learning, um repetitive Aufgaben zu automatisieren und Empfehlungen für das weitere Vorgehen auf der Grundlage von Nutzungsanalysen zu geben. (Denodo: ra)

eingetragen: 14.02.20
Newsletterlauf: 28.04.20

Denodo: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>


Meldungen: Tipps und Hinweise

  • Sicher modernisieren & Daten schützen

    Viele Unternehmen haben die Cloud-Migration ihrer SAP-Landschaften lange Zeit aufgeschoben. ERP-Anwendungslandschaften, sind über viele Jahre hinweg gewachsen, die Verflechtungen vielfältig, die Datenmengen enorm und die Abhängigkeit der Business Continuity von diesen Systemen gigantisch. Dennoch: Der Druck zur ERP-Modernisierung steigt und viele Unternehmen werden 2025 das Projekt Cloud-Migration mit RISE with SAP angehen.

  • Was tun mit ausgedienten Rechenzentren?

    Rund um die Jahrtausendwende begann in Deutschland ein wahrer Bauboom für Datacenter und Colocation-Flächen. Viele dieser Anlagen befinden sich auch heute noch in Betrieb. Doch die rasante Entwicklung der Informationstechnologie führt dazu, dass Rechenzentren in immer kürzeren Abständen modernisiert oder ersetzt werden müssen. Denn wann immer ein Betreiber den Spatenstich für ein neues Datacenter feiert, dürfen die Begriffe "Nachhaltigkeit" und "Umweltschutz" nicht fehlen.

  • Tipps für MSPs im Jahr 2025

    Ob durch technologische Innovationen, geschicktes Marketing oder eine starke Unternehmenskultur - mit den richtigen Maßnahmen können MSPs im Jahr 2025 nicht nur ihre Wettbewerbsfähigkeit steigern, sondern auch langfristig wachsen. Hier sind acht Tipps, die ihnen dabei helfen, das Jahr erfolgreich zu gestalten.

  • KI-Logik in der Unternehmenssoftware

    Für Unternehmen stellt sich nicht mehr die Frage, ob, sondern wie sie Künstliche Intelligenz für ihren Business Case nutzen. Der meist aufwändigen Implementierung von KI-Tools in bestehende Systeme sagt innovative Software jetzt den Kampf an - mit bereits in die Lösung eingebetteter KI. IFS, Anbieterin von Cloud-Business-Software, zeigt, wie Unternehmen anstatt der schwerfälligen Integration von externen Tools ein technologisches Komplettpaket erhalten, das sofort einsatzfähig ist.

  • Schutz von Cloud-Daten

    In der aktuellen Umfrage "2024 State of Cloud Strategy Survey" geben 79 Prozent der Befragten in Unternehmen an, dass sie Multicloud im Einsatz haben oder die Implementierung von Multicloud planen. Die Chancen stehen also gut, dass Multicloud-Strategien weiter zunehmen werden, wenngleich das nicht bedeutet, dass lokale und private Clouds verschwinden.

  • Das Herzstück des Betriebs

    Salt Typhoon mag ein Weckruf sein, aber es ist auch eine Gelegenheit, die Abwehrkräfte zu stärken und Unternehmen gegen aufkommende Bedrohungen zukunftssicher zu machen. Der Angriff hat Schwachstellen im Telekommunikations- und ISP-Sektor aufgedeckt, aber die daraus gezogenen Lehren gehen weit über eine einzelne Branche hinaus. Ob Telekommunikationsunternehmen, Internetdienstanbieter, SaaS-abhängiges Unternehmen oder Multi-Cloud-Unternehmen - Datensicherung muss für alle oberste Priorität haben.

  • Optimale Wissensspeicher

    Graphdatenbanken sind leistungsstarke Werkzeuge, um komplexe Daten-Beziehungen darzustellen und vernetzte Informationen schnell zu analysieren. Doch jeder Datenbanktyp hat spezifische Eigenschaften und eignet sich für andere Anwendungsfälle. Welche Graphdatenbank ist also wann die richtige? Aerospike empfiehlt Unternehmen, ihre Anforderungen unter vier Gesichtspunkten zu prüfen.

  • Zugang zu anfälligen Cloud-Hosts

    Zwischen 2023 und 2024 haben laut einer aktuellen Studie 79 Prozent der Finanzeinrichtungen weltweit mindestens einen Cyberangriff identifiziert (2023: 68 Prozent). Hierzulande berichtet die BaFin, dass 2023 235 Meldungen über schwerwiegende IT-Probleme eingegangen sind. Fünf Prozent davon gehen auf die Kappe von Cyberangreifern.

  • Wachsende SaaS-Bedrohungen

    Die jüngsten Enthüllungen über den massiven Cyberangriff von Salt Typhoon auf globale Telekommunikationsnetzwerke sind eine deutliche Erinnerung an die sich entwickelnde und ausgeklügelte Natur von Cyberbedrohungen. Während die Angreifer sich darauf konzentrierten, Kommunikation abzufangen und sensible Daten zu entwenden, werfen ihre Handlungen ein Schlaglicht auf ein umfassenderes, dringenderes Problem: die Unzulänglichkeit traditioneller Datensicherungsmethoden beim Schutz kritischer Infrastrukturen.

  • Einführung des Zero-Trust-Frameworks

    Die Cyber-Sicherheit entwickelt sich mit rasanter Geschwindigkeit, weshalb eine traditionelle Verteidigung den Anforderungen nicht mehr gerecht wird. Moderne Cyber-Bedrohungen bewegen sich inzwischen mühelos seitlich innerhalb von Netzwerken und nutzen Schwachstellen aus, die mit traditionellen Perimeter-Schutzmaßnahmen nicht vollständig behoben werden können.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen