Sie sind hier: Startseite » Markt » Unternehmen

Datenanalyse- und Cloud-KI-Services


KI und ML mit Google Cloud einfach einsetzen
Datenanalyse und maschinelles Lernen für mehr Unternehmen


Blogpost von Rajen Sheth, Director of Product Management bei Google

Künstliche Intelligenz (KI) wird bereits von zahlreichen Unternehmen genutzt. Doch noch immer haben rund 40 Prozent keine KI-Systeme in ihre Strukturen integriert. Um Unternehmen einfachere und gleichzeitig hoch effiziente Tools anzubieten, haben wir am zweiten Tag der Google Cloud Next 2018 zahlreiche Updates unserer Datenanalyse- und Cloud-KI-Services präsentiert. So ermöglicht BigQuery ML eine noch schnellere Verbindung zwischen Daten im Unternehmen und einer intelligenten Auswertung, ohne eine aufwendige Infrastruktur aufbauen zu müssen. Das spart nicht nur Zeit und Geld, sondern vereinfacht den Aufbau

Die meisten Unternehmen erkennen bereits heute den Wert von künstlicher Intelligenz (KI). Über 60 Prozent greifen in ihren Strukturen auf KI zurück. Doch was ist mit den restlichen 40 Prozent? Was hält sie davon ab?

Durch die Zusammenarbeit mit Hunderten von Unternehmen haben wir festgestellt, dass es bei der Verwendung von KI auf Einfachheit und Zweckmäßigkeit ankommt. Unternehmen brauchen Tools, die simpel einzusetzen und vertraut sind – und sie müssen sie direkt für ihre spezifischen Herausforderungen anwenden können.

Heute nehmen wir eine Reihe von Updates an unseren Datenanalyse- und Cloud-KI-Services vor, die KI einfacher und zweckmäßiger gestalten werden. Damit machen wir KI so vielen Unternehmen und Entwicklern zugänglich, wie wir können.

Folgendes ist neu:
>> BigQuery ML, ab sofort als Beta-Version verfügbar

>> Unterstützung für die Schulung und die Online-Vorhersage durch scikit-learn und XGBoost in Cloud ML Engine

>> Kubeflow v0.2

>> Cloud TPU v3 und Cloud TPU Pod jeweils als Alpha-Version verfügbar

>> Cloud TPU v3, ab sofort als Alpha-Version verfügbar

>> Eine neue Partnerschaft mit Iron Mountain

Mit BigQuery ML Daten noch näher mit maschinellem Lernen zusammenbringen
Für viele Unternehmen gibt es hohe Hürden beim Aufbau der Analysepipeline, die für KI-Systeme notwendig ist. Allein ein Team aus eigenen Datenwissenschaftlern aufzubauen ist für einige unmöglich. Datenanalysten, die üblicherweise über SQL-Kenntnisse verfügen, sind nicht immer mit den Prozessen und Programmiersprachen vertraut, die für maschinelles Lernen benötigt werden. Außerdem kann das Verschieben von Daten aus einem Enterprise Data Warehouse zeitaufwendig und kostspielig sein.

Um diese Herausforderungen zu meistern, stellen wir BigQuery ML vor. BigQuery ML bietet Millionen von Nutzern Zugang zur prädiktiven Analyse – selbst wenn der datenwissenschaftliche Hintergrund fehlt. Durch die Bereitstellung von Machine Learning (ML) an den Datenspeicherorten hilft BigQuery ML Kunden dabei, Modelle schnell zu erstellen und zu nutzen – und damit die Zeit bis zur Markteinführung zu verkürzen. Entwickler können entsprechend skalierte Modelle für große Datensätze anwenden, alles mit einfachen SQL-Befehlen.

Einen tiefer gehenden Blick auf BigQuery ML und die vielen Möglichkeiten, die es bietet, gibt es in unserem Blog zur Datenanalyse.

Mit unserer KI-Plattform bringen wir maschinelles Lernen zu mehr Datenwissenschaftlern
Um aus Rohdaten Geschäftseinblicke zu bekommen, sind viele Dinge nötig: enorme Rechenressourcen, Tools für den Aufbau von ML-Modellen und die Fähigkeit, sie zu trainieren und zu optimieren. Das kann mitunter abschreckend wirken. Datenwissenschaftler wünschen sich eine Komplettlösung, die genau das vereinfacht. Um dieses Problem zu lösen, stellen wir mit der von uns geschaffenen KI-Plattform einen End-to-End-Stack bereit – von unserer Hochleistungsinfrastruktur über maßgeschneiderte und für maschinelles Lernen optimierte Hardware bis hin zu Fully Managed Services wie Cloud ML Engine. Und durch eine Reihe von Verbesserungen machen wir das Ganze ab sofort noch schneller und einfacher.

Unterstützung für die Schulung und Online-Vorhersage mit scikit-learn und XGBoost
Ganz gleich, ob in der Cloud, vor Ort oder durch eine Kombination aus beidem – Unternehmen brauchen häufig die Freiheit verschiedener ML Frameworks für Schulung und Nutzung der Modelle. Ab heute unterstützt Cloud ML Engine sowohl die Schulung als auch die Online-Vorhersage durch scikit-learn und XGBoost. Außerdem kündigen wir auch die Verfügbarkeit von Cloud Deep Learning VM Image an. Anhand der darin angebotenen vorkonfigurierten Images können mithilfe von TensorFlow, scikit-learn und PyTorch auf Google Cloud ML-Projekte gestartet werden.

Einführung von Kubeflow v0.2
Wir investieren auch weiterhin in Open-Source-Software und unterstützen zahlreiche Open-Source-Standards für die Datenanalyse und maschinelles Lernen. Im vergangenen Jahr haben wir Kubeflow vorgestellt, um die Nutzung von Softwarestacks wie TensorFlow und scikit-learn für maschinelles Lernen zu vereinfachen – und das alles in Kubernetes. Kubeflow v0.2, das ab sofort verfügbar ist, bietet eine verbesserte Nutzeroberfläche für die Navigation durch die Komponenten und hält darüber hinaus zahlreiche Optimierungen für Beobachtung und Berichte bereit. Mehr dazu gibt es hier.

Unser Stack für maschinelles Lernen von der Cloud zur Edge
Unsere gesamte KI-Plattform baut auf unserer Hochleistungsinfrastruktur auf. Diese reicht von unseren weltweiten Netzwerken bis zu unseren Cloud TPUs, also für Arbeitsbelastungen des maschinellen Lernens entwickelte ASICs. Jede TPU (TensorFlow Processing Unit) liefert bis zu 180 TeraFLOPS (Floating-Point-Performance) und beinhaltet ein maßgeschneidertes Hochgeschwindigkeitsnetzwerk, über das die TPUs in "TPU-Pods" zusammenarbeiten können. Heute kündigen wir das Alpha-Release von Cloud TPU Pod an, mit dem 11,5 PetaFLOPS bereitgestellt werden. Das beschleunigt die Schulung eines einzelnen großen Modells für das maschinelle Lernen erheblich.

Außerdem haben wir die Unterstützung und die Verfügbarkeit unserer bestehenden TPU-Angebote verbessert. Unsere Kunden können ab sofort die Cloud TPUs der zweiten Generation nutzen. Die TPUs der dritten Generation, die wir auf der diesjährigen I/O angekündigt haben, können als Alpha-Version getestet werden. Zudem stellen wir die Unterstützung für die Cloud TPUs in Kubernetes Engine als Beta-Version bereit. Wir erwarten, dass das rechenintensive maschinelle Lernen dadurch schneller und zweckmäßiger wird.

Durch die Erweiterung unseres ML-Stacks wissen wir, wie wichtig es ist, schnellere Interferenzen an der Edge durchführen zu können. Dafür führen wir mit Edge TPU eine maßgeschneiderte ASIC ein, die im Rahmen unserer Cloud IoT Edge-Lösung angeboten wird. Mehr dazu in unserem IoT-Blogpost.

Wir machen KI zugänglicher für Entwickler
Es gibt weltweit mehr Entwickler als Datenwissenschaftler. Wir möchten KI unabhängig vom Wissen im Bereich des maschinellen Lernens ermöglichen. Daher bieten wir von vortrainierten Modellen in unseren ML-APIs bis AutoML, womit eigene maßgeschneiderte Modelle erstellt werden können, alles an. Damit haben Entwickler das Beste aus beiden Welten: die einfache Nutzung und die hohe Modellqualität.

Seit der Einführung von AutoML im Februar dieses Jahres haben wir erkannt, dass Kunden diese Technologie für komplett neue ML-Anwendungen nutzen. Ein Beispiel dafür ist Urban Outfitters. Das Unternehmen nutzt AutoML Vision, um seinen Kunden ein noch besseres Einkaufserlebnis zu bieten. "Um einen umfassenden Datensatz an Produktattributen zu erstellen und zu pflegen, setzt unser Team auf AutoML Vision. Dadurch konnten wir nuancierte Produkteigenschaften wie Muster und Dekolleté-Stile automatisiert erkennen," sagt Alan Rosenwinkel, Datenwissenschaftler bei der Muttergesellschaft URBN. "Das ist entscheidend, um unseren Kunden relevante Produktempfehlungen, exakte Suchergebnisse und hilfreiche Produktfilter bieten zu können. Denn es ist zeitaufwändig und mühsam, Produktattribute manuell anzulegen. Wir freuen uns auf die weitere Zusammenarbeit mit Google-Cloud-KI, um für unsere Kunden weitere Innovationen zu schaffen."

Zusammenarbeit mit Iron Mountain
Eine entscheidende Herausforderung für viele Unternehmen, ist das Extrahieren von Insights aus "Dark Data", also zum Beispiel Informationen in gespeicherten Dokumenten. Daher arbeiten wir mit Iron Mountain zusammen, um mit unseren Tools branchenspezifische Lösungen zu schaffen. Wir haben bereits damit begonnen, an ML-Lösungen für Hypothekendokumente, Kunden aus dem Energiesektor, Medien- und Entertainment-Assets und mehr zu arbeiten. Dafür nutzen wir unsere Forschung und Kompetenz in den Bereichen Optische Zeichenerkennung (OCR), Entity Extraction und Verarbeitung natürlicher Sprache. Wir arbeiten eng mit Iron Mountain zusammen, um herauszufinden, was deren Kunden benötigen und wo unsere Technologie helfen kann. Mehr über unsere Partnerschaft hier.
(Google Enterprise: ra)

eingetragen: 15.08.18
Newsletterlauf: 24.08.18

Google Enterprise: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>



Meldungen: Unternehmen

  • Bereitstellung innovativer Cloud-Lösungen

    Arrow wurde im Rahmen der Context ChannelWatch Distributor of the Year Awards 2024 als "Bester Cloud-Partner" für Europa und "Bester Cybersecurity-Partner" für Spanien ausgezeichnet. Die Auszeichnungen basieren auf einer der weltweit größten Umfragen unter IT-Resellern und unterstreichen die Kompetenz von Arrow in der Bereitstellung innovativer Cloud- und Cybersicherheitslösungen.

  • kgs und Arvato Systems bauen Partnerschaft aus

    Die seit über zehn Jahren existierende Partnerschaft zwischen der IT-Dienstleisterin Arvato Systems und dem Archivierungsspezialisten kgs soll jetzt weiter vertieft werden. Vereinbart wurde eine Intensivierung der inhaltlichen Zusammenarbeit sowie der verstärkte Ausbau der gemeinsamen Kundenbasis.

  • Nutzung der Guidewire Cloud-Plattform

    Hexaware Technologies, ein Unternehmen für IT-Dienstleistungen und -Lösungen, gab bekannt, dass es die Cloud-Spezialisierung des "Guidewire PartnerConnect Consulting Program" für die EMEA-Region hat. Hexaware ist ein "Guidewire PartnerConnect"-Consulting-Partner auf der Advantage-Ebene.

  • Einfachere Sicherheitsverwaltung für alle Geräte

    Die OTRS AG, Herstellerin von Service-Management-Softwarelösungen, und FileWave AG, Anbieterin von plattformübergreifenden Geräteverwaltungslösungen, schließen sich zusammen, um es für IT-Teams einfacher und effizienter zu machen, ihre Geräte und Aufgaben zu verwalten. Zum Start der Partnerschaft haben die OTRS Group und FileWave ihre Kernprodukte integriert: das Ticketing- und Prozessautomatisierungssystem OTRS und die Geräteverwaltungslösung von FileWave.

  • Proaktive Cloud-Workload-Segmentierungsrichtlinien

    Illumio, Anbieterin für Zero-Trust-Segmentierung, gab bekannt, dass Illumio für ihre Cloud-Sicherheitslösung "Illumio CloudSecure" den Sicherheitskompetenz-Status von Amazon Web Services (AWS) erhalten hat. Diese Auszeichnung unterstreicht, dass Illumio eine erstklassige Technologie bietet, die Kunden dabei unterstützt, ihre Cloud-Sicherheitsziele zu erreichen.

  • Engagement und Fachwissen

    Arrow ist laut eigenen Angaben weltweit der einzige Catalyst Partner der Broadcom Enterprise Security Group, der das Symantec Enterprise Cloud Competency-Zertifikat (Enterprise Level) erhalten hat. Arrow erhält die Auszeichnung für ihren Kundenservice und das Engagement rund um die Symantec Enterprise von Broadcom.

  • Zunahme von SaaS-Angriffen

    Obsidian Security erweitert ihre Präsenz in Europa. Das Erfolgsrezept App-Security über die Absicherung von Software-as-a-Service (SaaS)-Anwendungen ist nun auch dem deutschen Markt zugänglich. Die Expansion nach Kontinentaleuropa wird zudem den Support für viele der führenden Unternehmen in der Region verbessern, die bereits Obsidian-Anwender sind.

  • Identitätssicherheit in SaaS-Apps

    Okta und die OpenID Foundation wollen einen Identitätssicherheitsstandard für Unternehmensanwendungen etablieren. Denn tausende Anwendungen in der Cloud verfügen immer noch nicht über sichere Identitäten. An der dafür neu gegründeten OpenID Foundation-Arbeitsgruppe sind auch Ping Identity, Microsoft, Capital One, SGNL und Beyond Identity beteiligt.

  • Umsetzung erfolgreicher GenAI-Projekte

    Devoteam gibt bekannt, dass sie als eine der ersten Partner weltweit die Google Cloud Generative AI-Services-Spezialisierung erhalten hat.

  • Hybride Multi-cloud-Vision

    Nutanix, Spezialistin für hybrides Multicloud-Computing, ist im "Gartner Magic Quadrant for Distributed Hybrid Infrastructure, 2024" als "Leader" gelistet. Gartner beschreibt verteilte hybride Infrastrukturen als "Angebote mit Cloud-nativen Eigenschaften, die Kunden am Ort ihrer Wahl bereitstellen und betreiben können (…) Verteilte hybride Infrastrukturen schaffen die Grundlage für die verteilte Bereitstellung von Anwendungen, die aber einem weiterhin Cloud-orientierten oder davon inspirierten Ansatz folgt. Workloads außerhalb einer Public-Cloud-Infrastruktur werden dadurch agiler und flexibler."

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen