"Neo4j AuraDS" in der Cloud
"Neo4j Graph Data Science" erstmals as-a-Service verfügbar
"Neo4j AuraDS" bietet umfassenden Graph-Analytics-Workspace für Predictive Analytics und ML-Pipelines
Neo4j, Anbieterin von Graphtechnologie, stellt "Neo4j Graph Data Science" erstmals als vollständig verwalteten Cloud Computing-Service bereit. AuraDS bietet neue und erweiterte Features sowie einen umfassenden Graph-Analytics-Workspace. Data Scientists können bei der Entwicklung von KI-Anwendungen nun deutlich schneller und einfacher auf Predictive Analytics-Funktionen und Machine Learning Pipelines zugreifen.
Neo4j AuraDS ist zunächst auf der Google Cloud Platform (GCP) verfügbar und kann in Verbindung mit bestehenden GCP-Verträgen sowie einzeln bezogen werden. Die Lösung ermöglicht den Zugriff auf mehr als 65 Graph-Algorithmen in einem einzigen Workspace für schnellere Entwicklungsprozesse. Graph-interne ML-Modelle und der native Python-Client steigern die Produktivität und vereinfachen die Arbeitsabläufe. Darüber hinaus profitieren Anwender von AuraDS von folgenden Vorteilen:
>> Workflow-Optimierung: Drag-and-Drop-Benutzeroberfläche zum Modellieren und Importieren von Daten in Graphen
>> Flexible Skalierung: Bedarfsgerechte Anpassung der Rechenleistung bei sich ändernden Anforderungen
>> Hohe Automatisierung: Automatisches Monitoring, Patchen und Sichern von Workloads im Hintergrund ohne manuelles Eingreifen
>> MLOps-Unterstützung: Persistieren, Veröffentlichen und Wiederherstellen von Machine Learning (ML)-Modellen ohne Unterbrechungen durch Neustarts
>> Transparente Kosten: Kosteneinsparungen durch Pay-as-you-go-Prinzip, On-Demand-Skalierung sowie Pausieren von ungenutzten Instanzen
>> One-Klick-Backup: Erstellen von Snapshots von Instanzen, Modellen und In-Memory-Graphen
Neo4j bietet darüber hinaus Anleitungen und Referenzarchitekturen für den Einstieg in die Nutzung von Neo4j AuraDS mit VertexAI.
"Neo4j Graph Data Science hilft Entwicklern, ihre prädiktiven Analysen und Recommendation Engines zu optimieren", so Ritika Suri, Director Technology Partnerships bei Google. "Mit der Bereitstellung über GCP gewinnt die Graph Data Science-Lösung nun eine vertrauenswürdige, globale Infrastruktur in der Cloud. Anwender können die Plattform nahtlos entsprechend ihrer Geschäftsanforderungen skalieren und sie gemeinsam mit Lösungen wie Big Query sowie das umfangreiche KI, ML und Analytik-Toolset auf Google Cloud nutzen."
Neben Neo4j AuraDS in der Cloud können Data Scientists auch weiterhin Neo4j Graph Data Science On-Premise nutzen. Die Bibliothek aus Graph-Algorithmen, ML-Pipelines und Data-Science-Methoden hat sich weithin bewährt und kann problemlos Hunderte von Milliarden von Knoten und Beziehungen verarbeiten. Die hohe Performance erleichtert es Data Scientists, innerhalb von bestehenden Data-Pipelines und Tools ihres Ökosystemes zu arbeiten. Anwender erhalten eine ganzheitliche Umgebung, um das Potential von Graphtechnologie in vollem Umfang auszuschöpfen, Graph-Algorithmen und ML-Modelle anzuwenden und so die nächste Generation an KI-Anwendungen zu realisieren. Neo4j Graph Data Science punktet überall dort, wo eine hohe Genauigkeit der prädiktiven Analysen und damit ein umfassender Datenkontext nötig sind. Dazu gehören neben Recommendation Engines auch die Betrugsaufdeckung, das Risk Assessment und die 360-Grad-Kunden-Analyse.
"Skalierung steht für uns an erster Stelle, denn wir verarbeiten Kundendaten, deren Größe wir im Voraus nicht abschätzen können", erklärt Zack Gow, CTO von Orita, einem US-amerikanischen Start-up, das Kundendaten über verschiedene Plattformen und Kanäle hinweg sammelt, analysiert und aufbereitet. "Neo4j bewältigt die Skalierung von unvorhersehbaren Kundendaten ohne Probleme. Mit Neo4j Graph Data Science konnten wir schnell mit dem Data Science-Teil unserer Arbeit beginnen. Als Start-up-Unternehmen ist bei uns hohes Tempo angesagt. Da wollen wir keine Zeit mit schwerfälligen Tools verschwenden." (Neo4j: ra)
eingetragen: 16.05.22
Newsletterlauf: 08.06.22
Neo4j: Kontakt und Steckbrief
Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.