Sie sind hier: Startseite » Markt » English News

Lernpipelines orchestrieren und verwalten


Kubeflow Pipelines eine ideale Hybridlösung vom Prototyping bis hin zur Produktion
Mit Kubeflow Pipelines kann KI noch effektiver genutzt werden


Um Künstliche Intelligenz (KI) für Unternehmen einfacher verfügbar zu machen, hat Google Cloud bereits Anfang des Jahres AutoML vorgestellt. Damit werden Unternehmen mit begrenztem Machine-Learning-Wissen beim Aufbau eigener Modelle unterstützt. Heute kommen zwei weitere KI-Werkzeuge dazu, die es Unternehmen leichter machen, KI für sich zu nutzen: Der AI Hub ist eine neue, universelle Plattform für Machine-Learning-Plug-and-Play-Inhalte: ML-Ressourcen, die von Google Cloud entwickelt wurden, sind für alle Unternehmen öffentlich zugänglich. Zusätzlich bietet AI Hub eine sichere, zentrale Plattform, auf der Unternehmen ML-Ressourcen hochladen und innerhalb ihrer eigenen Organisation gemeinsam testen und nutzen können.

Mit Kubeflow Pipelines kann KI noch effektiver genutzt werden. Dies ist die neueste Komponente des Kubeflow-Projekts und ermöglicht es Anwendern, mehrstufige maschinelle Lernpipelines zu orchestrieren und zu verwalten. Somit ist Kubeflow Pipelines eine ideale Hybridlösung vom Prototyping bis hin zur Produktion.

Introducing AI Hub and Kubeflow Pipelines: Making AI simpler, faster, and more useful for businesses

Hussein Mehanna, Engineering Director, Cloud ML Platform

Whether they’re revolutionizing the clothing manufacturing supply chain or accelerating e-commerce, businesses from every industry are increasingly turning to AI to advance what’s possible. Yet for many businesses, the complexities of fully embracing AI can seem daunting.

Our goal is to put AI in reach of all businesses. But doing that means lowering the barriers to entry. That’s why we build all our AI offerings with three ideas in mind: make them simple, so more enterprises can adopt them, make them useful to the widest range of organizations, and make them fast, so businesses can iterate and succeed more quickly.

Earlier this year, we announced AutoML to help businesses with limited ML knowledge and expertise build their own custom ML models. We’ve invested in specialized training and certifications to help grow the ML skill set more broadly. And we provide enterprises resources like the Advanced Solutions Lab that offer on-site collaboration with Google’s own ML engineers. All these things have helped grow AI adoption across enterprises. To date, we have more than 15,000 paying customers across many different industries using our AI services.

Another way we’re aiming to make AI faster, simpler and more useful is by helping data scientists be more effective. Although there are approximately 20 million developers worldwide, there are only 2 million data scientists. They need tools that can help them scale their efforts, and organizations need more ways to take advantage of their work and make it accessible to their developers and engineers. Today we’re announcing several new products to our AI portfolio that do exactly that.

Making AI simpler with the AI Hub
Putting AI in reach of more businesses means making it easier for them to discover, share, and reuse existing tools and work. But until recently, the scarcity of ML knowledge in the workforce made it challenging to build a comprehensive resource. Today we’re launching the AI Hub to address this need.

The AI Hub is a one-stop destination for plug-and-play ML content, including pipelines, Jupyter notebooks, TensorFlow modules, and more. It offers two significant benefits. The first is making high quality ML resources developed by Google Cloud AI, Google Research and other teams across Google publicly available to all businesses. The second is that it provides a private, secure hub where enterprises can upload and share ML resources within their own organizations. This makes it easy for businesses to reuse pipelines and deploy them to production in GCP—or on hybrid infrastructures using the Kubeflow Pipeline system—in just a few steps.

In alpha, the AI Hub will provide these Google-developed resources and private sharing controls, and its beta release will expand to include more asset types and a broader array of public content, including partner solutions.

Making AI more useful with Kubeflow Pipelines and API updates for video
It’s not enough to provide a place where organizations can discover, share and reuse ML resources, they also need a way to build and package them so that they’re as useful as possible to the broadest range of internal users. That’s why we’re introducing Kubeflow Pipelines.

Kubeflow Pipelines are a new component of Kubeflow, a popular open source project started by Google, that packages ML code just like building an app so that it’s reusable to other users across an organization. Kubeflow Pipelines provides a workbench to compose, deploy and manage reusable end-to-end machine learning workflows, making it a no lock-in hybrid solution from prototyping to production. It also enables rapid and reliable experimentation, so users can try many ML techniques to identify what works best for their application.

Fairness is one of our guiding AI principles and something we discuss with our cloud customers adopting ML in their own businesses. Kubeflow Pipelines can help them take advantage of Google’s TensorFlow Extended (TFX) open source libraries that address production ML issues such as model analysis, data validation, training-serving skew, data drift, and more. This improves the accuracy, relevance, and fairness of results for businesses. You can get started with Kubeflow Pipelines on GitHub.

We also continue to expand the capabilities of our AI building blocks to make them even more useful for enterprises, including the beta release of three features in our Cloud Video API that address common challenges for businesses that work extensively with video. Text Detection can now determine where and when text appears in a video, making that video more readily searchable, and it supports more than 50 languages. Object Tracking can both identify more than 500 classes of objects in a video. Speech Transcription for Video can transcribe audio, making it possible to easily create captioning and subtitles, as well as increasing the searchability of its contents. You can learn more about our AI building blocks on our website.

Making AI faster with Cloud TPU updates
We’re continually lowering the compute barriers to AI with our Tensor Processing Units (TPUs). These custom ASIC chips designed by Google for machine learning workloads dramatically accelerate ML tasks, and are easily accessed through the cloud.

In July we announced that our second-generation TPUs are generally available and within reach of every Cloud user, including free-tier users. In October, we announced the beta release of our third generation, liquid-cooled Cloud TPUs, and we made PyTorch available across Google Cloud, and will soon be available for use on TPUs. Today we also announced pricing for our V2 TPU Pods. All these updates aim to make compute-intensive machine learning faster and more accessible to businesses worldwide. You can learn more about TPUs on our website.

Looking forward
Over the past several months we’ve heard from many of our customers successfully using AI to solve their unique business challenges.

Meredith Corporation, a media company, uses machine learning to automate content classification, applying a custom universal taxonomy with Cloud AutoML and Natural Language. Machine learning helps them make content classification more repeatable and scalable, saving time and improving reader experiences.

"At Meredith Corporation, we’re focused on creating compelling content across platforms and life stages for brands such as PEOPLE, Better Homes & Gardens, Martha Stewart Living, Allrecipes, and Food & Wine,” says Alysia Borsa, Chief Marketing & Data Officer, Meredith Corporation. "By using Natural Language and AutoML services to apply our custom universal taxonomy to our content, we’re able to better identify and respond to emerging trends, enable robust detailed targeting and provide our audience with more relevant and engaging experiences.”

Emory University is combining clinical data, machine learning, and the scalable infrastructure of GCP to develop a sepsis prediction engine that uses real-time analytics in an effort to provide better care for at-risk patients while also controlling medical costs.

"With sepsis, early detection is key,” says Dr. Ashish Sharma, Assistant Professor, Department Department of Biomedical Informatics, Emory University’s School of Medicine. "By converting our TensorFlow-based sepsis prediction algorithm into an App and running it on the Google App Engine, we're able to provide information in the actionable window when physicians can make meaningful interventions for a patient. What matters most is improving medical outcomes for real patients in ICUs and machine learning is crucial to helping optimize patient care.”

Geotab uses BigQuery ML and BigQuery GIS to predict potential hazardous driving areas in Chicago and promote data driven decision making and enable smart city initiatives.

"Geotab provides data-driven insights on commercial fleet vehicles across every continent,” says Mike Branch, Vice President Data & Analytics, Geotab. "By leveraging machine learning and BigQuery, among other smart city insights, we have been able to develop a solution for our customers that predicts particularly hazardous driving areas in a city based on weather and traffic flow. We’re incredibly excited to be collaborating with Google Cloud’s machine learning technology to help create better solutions for our customers and the community.”

We’re also thrilled to see the continued growth of the Kubeflow community. Organizations like Cisco and NVIDIA are among the key contributors to this open source project and are collaborating with us closely to adopt Kubeflow pipelines. NVIDIA is already underway integrating RAPIDS, a new suite of open source data science libraries, into Kubeflow. The RAPIDS library leverages GPUs to provide an order of magnitude speed-up for data pre-processing and machine learning, thus perfectly complementing Kubeflow.

"Machine learning is fast emerging as an indispensable part of the digital transformation our customers are undertaking. Further, ML is increasingly gaining traction with enterprise IT and mainstream engineering teams as they seek to deploy architectures that serve data scientists in their lines of business. Realizing the potential of ML in enterprise environments requires dramatic simplification of the lifecycle of the entire solution,” said Kaustubh Das, vice president, data center product management at Cisco. "Cisco’s significant contributions to Kubeflow aims to simplify hybrid/multi cloud AI/ML life cycle management. Cisco is also delighted to see the emergence of Kubeflow Pipeline that promises a radical simplification of ML workflows which are critical for mainstream adoption. We look forward to bringing the benefits of this technology alongside our world class AI/ML product portfolio to our customers." (Google: ra)

eingetragen: 17.11.18
Newsletterlauf: 12.12.18

Google Enterprise: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>


Meldungen: Unternehmen

  • Präsenz mit neuem Standort in Spanien

    CGI gab bekannt, dass ihre hundertprozentige Tochtergesellschaft CGI Deutschland B.V. & Co. KG eine Vereinbarung zur Übernahme von Novatec Consulting GmbH unterzeichnet hat. Novatec ist ein IT-Dienstleistungsunternehmen, das auf agile Softwareentwicklung, digitale Produkte und strategische Geschäfts- und IT-Beratung spezialisiert ist. Mehr als 300 hochqualifizierte IT- und Beratungsexperten mit Hauptsitz im Metromarkt Stuttgart sowie an sieben weiteren deutschen Standorten und in Granada (Spanien) werden die Präsenz von CGI in der Fertigungs- und Finanzdienstleistungsbranche mit besonderem Fokus auf die Automobilindustrie und E-Mobilität erweitern.

  • Migration von Workloads in die Azure-Cloud

    Arrow hat die Spezialisierung Infrastruktur- und Datenbankmigration auf Microsoft Azure erhalten. Sie demonstriert die umfassende Expertise, die langjährige Erfahrung und das tiefgehende Fachwissen von Arrow in der Migration von Kunden-Workloads in die Azure-Cloud.

  • Cloud-native, mandantenfähige Plattform

    LotusFlare, Anbieterin einer Cloud-nativen digitalen Handels- und Monetarisierungsplattform für Kommunikationsdienstleister (CSPs), gab ihre Mitarbeit bei der Konzeption, Entwicklung und Unterstützung des weltweit ersten grenzüberschreitenden Telko-Prämienprogramms bekannt.

  • Transparentes Preismodell ohne versteckte Kosten

    Leaseweb Global, Anbieterin von Cloud-Diensten und Infrastructure as a Service (IaaS), gab die Verfügbarkeit seiner Public Cloud- und Virtual Private Server (VPS)-Lösungen in Japan bekannt. Leaseweb Public Cloud wird über eine lokale, landeseigene Infrastruktur bereitgestellt und bietet eine äußerst wettbewerbsfähige Mischung aus kosteneffizienter Flexibilität und globaler Verfügbarkeit.

  • 27 Prozent Anstieg der Cloud-Nutzer

    Wildix, Anbieterin von KI-gestützten Unified-Communications-Lösungen, hat ihre Wachstumszahlen für 2024 bekanntgegeben. Diese bestätigen die führende Marktposition von Wildix. Das Unternehmen zeichnet sich durch KI-Innovationen in ihren UCC-Lösungen, spezifische Branchenlösungen und einen reinen Channel-Vertrieb aus und konnte seine globale Präsenz auf 145 Länder ausweiten.

  • Sicherheitsmaßnahmen & Compliance-Fachwissen

    Devoteam, ein KI-getriebenes Tech-Consulting-Unternehmen spezialisiert auf Cloud-Plattformen, Cybersicherheit, Datenverarbeitung und Nachhaltigkeit sowie Vorreiter im Bereich Managed Services, hat einen wichtigen Meilenstein erreicht: Die höchste Stufe der Managed-Service-Provider-Zertifizierung bei allen drei großen Hyperscale-Cloud-Anbietern.

  • Lernlabor "Sicheres Cloud-Computing"

    Mit der fortschreitenden Migration in die Cloud steigt auch der Bedarf an entsprechenden Sicherheitslösungen. Das Fraunhofer IESE steht seit über 20 Jahren für IT-Sicherheit und Datensouveränität für Digitale Ökosysteme. In einer Kooperation mit der Hochschule Worms wurde nun das Lernlabor "Sicheres Cloud-Computing" ins Leben gerufen, das nicht nur umfassendes Know-how für Cloud-DevOps, Cloud-Anwender und das mittlere Management von Cloud-Lösungsanbietern bietet.

  • Kontext zu Cloud-spezifischen Risiken

    Check Point Software Technologies, Anbieterin von Cybersicherheitslösungen, gibt eine strategische Partnerschaft mit Cloud-Security-Anbieterin Wiz bekannt. Sie hilft Unternehmen, die wachsenden Herausforderungen der Absicherung hybrider Cloud-Umgebungen zu bewältigen. Diese Zusammenarbeit überbrückt die seit langem bestehende Lücke zwischen Cloud-Netzwerksicherheit und Cloud Native Application Protection (CNAPP) durch eine tiefgreifende technologische Integration und eine strategische Geschäftsallianz und bietet eine branchenführende, einheitliche und ganzheitliche Sicherheitslösung.

  • ServiceNow-Implementierungen

    Sopra Steria, eine wichtige Akteurin im europäischen Technologiesektor, wurde vom international renommierten "PAC Innovation Radar" als einer der führenden Anbieter von Dienstleistungen im Zusammenhang mit ServiceNow in Europa anerkannt - als einer von nur fünf Anbietern, die 2024 eine "Best-in-Class"-Gesamtbewertung erhalten haben.

  • Maßgeschneiderte Cloud- & Hosting-Lösungen

    Die IT-Dienstleisterin und High-End Data Center Solutions Provider synaforce wächst weiter und übernimmt die Herbst Datentechnik GmbH. Das Unternehmen aus Berlin bringt über 25 Jahre Erfahrung als spezialisierter Cloud- und Hosting-Provider mit und ergänzt das synaforce-Portfolio um zusätzliche technologische Kompetenz. Kunden beider Unternehmen profitieren von einer erweiterten IT-Infrastruktur, leistungsfähigen Hosting-Lösungen und verstärkten Cybersecurity-Services.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen