Sie sind hier: Startseite » Markt » Hintergrund

Fehlendes Wissen über Process Mining


Warum bleibt das Process-Mining-Potenzial ungenutzt?
Process-Mining-Lösungen werden überwiegend als Cloud-Service angeboten und fast alle Unternehmen nutzen Process Mining in der Cloud


Process Mining liegt im Trend. Unternehmen nutzen verstärkt Lösungen im Bereich Prozessanalyse, um die Prozessoptimierung und -automatisierung voranzutreiben. Vielfach führen aber Process-Mining-Projekte nicht zum erhofften Ergebnis, und auch das erhebliche Optimierungspotenzial wird oft nur unzureichend ausgeschöpft. Dafür gibt es mehrere Gründe, die die Business- und IT-Dienstleisterin CGI beleuchtet.

Die Geschäftsvorgänge effizienter zu gestalten, zählt für viele Unternehmen in einer Zeit des steigenden Wettbewerbs- und Kostendrucks zu den zentralen Aufgaben in der IT und den Fachbereichen. Process Mining ist hierbei ein entscheidendes Hilfsmittel. Damit können Unternehmen Prozesse datengestützt analysieren, relevante Erkenntnisse gewinnen und so Verbesserungspotenziale identifizieren. Process Mining ist somit die Basis für die Optimierung und Automatisierung von Prozessen.

Immer mehr Unternehmen nutzen deshalb Process-Mining-Lösungen. Allerdings werden sie nach Erfahrung von CGI oft nur oberflächlich oder punktuell eingesetzt. Der IT-Dienstleister nennt fünf Gründe, die den Projekterfolg gefährden:

1. Fehlendes Wissen über Process Mining
Process Mining ist zwar keine neue Methode, doch wird das Leistungsspektrum moderner Lösungen oft unterschätzt. So nutzen Unternehmen Process Mining derzeit vorwiegend im Bereich Einkauf für P2P (Purchase-to-Pay)- und O2C (Order-to-Cash)-Prozesse oder im IT-Service-Bereich für das Incident Management. Prinzipiell ist der Einsatz von Process Mining jedoch für alle Prozesse geeignet, die auf IT-Systemen basieren. Prozessdaten können unternehmensweit über unterschiedliche IT-Systeme hinweg systematisch analysiert werden. Ziel ist das Erkennen von Schwachstellen, Ineffizienzen, Prozessabweichungen, Fehlern, unnötigen Prozessschritten, Systembrüchen oder Risiken. Damit schafft Process Mining die Grundlage, um Prozesse neu aufzusetzen, zu optimieren oder zu automatisieren, etwa unter Beseitigung überflüssiger Arbeitsabläufe. Process Mining mit der Identifizierung von Verbesserungspotenzialen ist der erste Schritt auf dem Weg zur Optimierung.

2. Fehlende Datenverfügbarkeit
In der Regel sind die meisten Prozesse in Unternehmen bereits IT-gestützt und bieten somit eine solide Basis für eine Process-Mining-Analyse. Die Stärke des Process Mining liegt dann in der detaillierten Prozessanalyse auf Datenbasis. Die Daten sind für das Process Mining von elementarer Bedeutung. Sie müssen in der richtigen Quantität und Qualität vorliegen und auch das Format ist entscheidend. Sinnvoll gepflegte Daten sind eine Grundvoraussetzung, ein Unternehmen muss allerdings ebenso wissen, in welchen Systemen die relevanten Daten vorhanden sind. Es führt folglich auch kaum ein Weg an einem ganzheitlichen Datenmanagement vorbei und somit an der Etablierung einer Data-Governance-Strategie.

3. Fehlendes Prozesswissen
In vielen Unternehmen entspricht die Wahrnehmung von Prozessen nicht dem realen Prozessablauf. Das heißt, es besteht keine Prozesstransparenz. Langjährig bewährte Prozesse werden deshalb nicht in Frage gestellt, solange keine massiven Fehler, Störungen oder Verzögerungen auftreten. Process Mining belegt hier, dass Unternehmen mit ihrer Einschätzung meistens falsch liegen. Die detaillierte Analyse von Prozessen zeigt alle Prozessvarianten auf, ein vermeintlich schlanker Prozess erweist sich dabei oft als "Spaghetti-Monster". Das Aufzeigen der verschiedenen Prozesswege kann ein erster Ansatz für die Optimierung sein. Darüber hinaus schafft eine nähere Untersuchung der einzelnen Prozessschritte etwa im Hinblick auf Change-Aktivitäten oder beteiligte Abteilungen auch die Basis für sinnvolle Prozessänderungen.

4. Vorbehalte gegenüber Cloud-Lösungen
Process-Mining-Lösungen werden überwiegend als Cloud Computing-Service angeboten und fast alle Unternehmen nutzen Process Mining in der Cloud. Generell nimmt die Cloud-Akzeptanz zu und viele Lösungen werden früher oder später ohnehin aus der Cloud genutzt werden. Beim Process Mining haben Unternehmen jedoch teilweise noch Vorbehalte hinsichtlich Data Privacy, gerade im Hinblick auf persönliche Daten, Teamdaten oder Benutzerkennungen. Das sollte allerdings keine Hemmschwelle darstellen, schließlich können die relevanten Cloud-Anbieter die erforderlichen Zertifizierungen hinsichtlich Sicherheit vorweisen. Ein hoher Sicherheitsstandard wird zudem durch Verschlüsselung oder auch eine mögliche Anonymisierung beziehungsweise Pseudonymisierung der Daten gewährleistet. Nicht zuletzt besteht für skeptische Unternehmen auch bei Process-Mining-Lösungen die Möglichkeit einer Private-Cloud-Nutzung oder eines On-Premises-Einsatzes.

5. Silo-Denken der Fachbereiche
Der Erfolg eines Process-Mining-Projekts hängt immer auch von der Management Attention ab, also von der Unterstützung durch die Führungsebene der betroffenen Abteilungen beziehungsweise Bereiche. Größere Projekte können sogar die Einbindung des C-Levels erfordern, etwa wenn eine unternehmensweite, abteilungsübergreifende Sicht auf die Prozesse vonnöten ist – Silodenken einzelner Fachbereiche darf den Erfolg nicht behindern. Folglich müssen alle relevanten Stakeholder in die Projektarbeit eingebunden werden. Schließlich führt eine Prozessanpassung beziehungsweise -optimierung immer auch zu einer Änderung bestehender, oft langjährig bewährter Prozessstrukturen. Hier müssen Unternehmen Überzeugungsarbeit leisten, Vorbehalte überwinden und die Nutzenargumentation in den Vordergrund stellen. Ein Process Mining erfordert deshalb in der Regel auch ein Change Management.

"Häufig besitzen Unternehmen nur eine unzureichende Kenntnis ihrer Prozesse, und Ineffizienzen sowie Schwachstellen sind nicht bekannt. Eine Process-Mining-Lösung kann hier eine entscheidende Unterstützung bieten. Sie ermöglicht eine detaillierte Prozessanalyse, die dann in einer Verbesserung und Automatisierung von Geschäftsabläufen münden kann", erklärt Christian Huppertz, Lead Consultant bei CGI. "Best Practices zeigen, dass ein sukzessives Vorgehen empfehlenswert ist. Als Startpunkt können Unternehmen kleinere Prozesse wählen, deren Ist-Zustand ermitteln und Soll-Zustand definieren. Eine Proof-of-Concept- und Proof-of-Value-Phase mit einer Ermittlung des Automatisierungs- oder Einsparungspotenzials schaffen dann eine transparente Entscheidungsgrundlage für die weitere Projektdurchführung." (CGI: ra)

eingetragen: 01.02.23
Newsletterlauf: 03.04.23

CGI: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>



Meldungen: Hintergrund

  • Anwendungsfälle für KI

    Unternehmen erleben heute mit der Künstlichen Intelligenz (KI) einen Déjà-vu-Moment. Ähnlich wie bei früheren Technologiesprüngen - dem Aufkommen des PCs, des Internets oder der Cloud-Technologie - stehen sie an einem Wendepunkt, an dem die breite Einführung von KI die Unternehmenslandschaft transformiert.

  • Vom Kreditinstitut zur Technologie-Oase

    Wir schreiben das Jahr 2035: Sie wachen auf und überprüfen Ihre Finanzen über einen sprachaktivierten digitalen Assistenten, der als Hologramm von Elvis erscheint. Nach der Authentifizierung durch Stimm- und Fingerabdruck-Biometrie liefert Ihnen der verstorbene King of Rock'n'Roll einen Überblick über Ihre Ausgaben, Ersparnisse und Investitionen in einem personalisierten Dashboard, das alle Ihre Konten und Finanzdaten an einem Ort zusammenfasst.

  • Cloud-Drucklösungen spielen eine große Rolle

    Heutzutage lässt sich technischer Fortschritt kaum mehr mit dem bloßen Auge erkennen. Selten vergeht ein Tag ohne eine weitere Innovation, die für mehr Effizienz sorgt. Diese Entwicklung macht auch vor Druckern nicht Halt. Cloud-Lösungen ermöglichen zentrale Administration und Kosteneinsparungen bei lokalen Servern. Doch in diesem Zusammenhang geht die Tendenz eher in Richtung langsamer Wechsel in die Wolke. Warum ist das so? "In vielen Unternehmen - insbesondere aus Branchen, in denen sensible Daten auf der Tagesordnung stehen - herrschen Sicherheits- und Datenschutzbedenken.

  • Finanzbranche steht vor einem Wendepunkt

    Immer mehr traditionelle Banken erkennen endlich die Vorteile des Outsourcings, um ihren Weg zur Digitalisierung zu beschleunigen und so ihre Effizienz und Kundenzufriedenheit zu optimieren. In Deutschland bremsen jedoch regulatorische Anforderungen das Tempo der Transformation. Karl im Brahm, CEO von Objectway DACH, betont, dass Banken diese Hürden nur durch Kooperationen mit Fintechs überwinden können.

  • CPUs und DSAs für Cloud- und KI-Erfolg

    Die Chimäre ist in der griechischen Mythologie eine Kreuzung aus Löwe, Ziege und Schlange. Sie hat den Kopf des Löwen, den Körper der Ziege mit einem weiteren Ziegenkopf auf dem Rücken und den Schwanz der Schlange

  • Vertrauen gegenüber Generative AI schwindet

    Im letzten Jahr zeigten sich deutsche Unternehmen wenig beeindruckt von den Sicherheitsrisiken von ChatGPT und Co. Sie vertrauten den vielversprechenden Generative-AI-Anwendungen und ihren Vorteilen bedingungslos. Nun legen die Ergebnisse einer aktuellen Gigamon-Studie* jedoch nahe, dass die Skepsis gegenüber diesen Tools in den vergangenen zwölf Monaten zugenommen hat.

  • Bedeutung der Cyber-Sicherheit

    Wie in jedem Jahr, so hat auch in diesem die Firma IBM zusammen mit dem Ponemon Institute die Studie Cost of a Data Breach 2024 veröffentlicht. Die Ergebnisse sprechen Bände: Mit 4,88 Millionen US-Dollar (rund 4,50 Millionen Euro) je Sicherheitsverletzung im weltweiten Durchschnitt liegen diese Kosten 10 Prozent über dem Jahr 2023 mit 4,5 Millionen US-Dollar (rund 4,16 Millionen Euro) und erreichen ein Rekord-Hoch.

  • Sicherheit in der Cloud

    Der Cloud Computing-Markt wächst beständig weiter und ein Ende dieses Aufwärtstrends scheint nicht in Sicht zu sein. Laut Prognosen könnte er bis 2032 die Marke von gut 2,29 Milliarden US-Dollar knacken. Das würde einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 16,5 Prozent entsprechen.

  • Demokratisierung der Künstlichen Intelligenz

    Open Source basiert auf Zusammenarbeit und Transparenz. Dank dieser beiden unbestreitbaren Vorteile haben Open-Source-Lösungen das Potenzial, die Art und Weise zu revolutionieren, wie KI-Systeme entwickelt und eingesetzt werden. Ein offener Ansatz für Künstliche Intelligenz ist unerlässlich.

  • Wie KI den Customer Service revolutioniert

    Die IT-Branche ist ein Umfeld des ständigen Wettbewerbs. CIOs treiben heute die digitale Transformation voran und investieren in digitale Technologien, um die Effizienz und Rendite ihres Unternehmens zu maximieren. Da sie dafür nur wenig Zeit und Ressourcen für IT-Services aufwenden möchten, wenden sie sich immer mehr der generativen KI zu.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen