Sie sind hier: Startseite » Markt » Tipps und Hinweise

KI gewinnbringend einsetzen


Erfolgreiche KI-Projekte beginnen mit dem Readiness-Check
Künstliche Intelligenz ist für Unternehmen in kürzester Zeit zum unverzichtbaren Innovationsmotor geworden


Das KI-Potenzial ist praktisch unerschöpflich. Doch um es richtig zu nutzen und daraus echte Wettbewerbsvorteile zu generieren, muss vorab die Bereitschaft des Unternehmens dafür geklärt werden. Der IT-Dienstleister CGI erklärt, warum der Readiness-Check so wichtig ist, was er genau analysiert und was mit den daraus gewonnenen Erkenntnissen passiert.

Künstliche Intelligenz ist für Unternehmen in kürzester Zeit zum unverzichtbaren Innovationsmotor geworden. Doch manche euphorisch gestarteten, aber letztlich gescheiterten Projekte zeigen, dass ihr erfolgreicher Einsatz ein systematisches Vorgehen erfordert. Der erste logische Schritt dabei ist eine umfassende Bestandsaufnahme der KI-Readiness eines Unternehmens. Der Readiness-Check liefert ein detailliertes Bild des Status Quo und damit die Voraussetzungen für eine realistische, an den tatsächlichen Fähigkeiten und Potenzialen eines Unternehmens orientierte KI-Strategie:

>> Die Analyse des KI-Reifegrads: Um KI gewinnbringend einsetzen zu können, ist es essenziell vorab den aktuellen Stand der Fähigkeiten und Schwachstellen innerhalb der Organisation zu erfassen, um daraus eine Roadmap für zukünftige Erfolge zu entwickeln. Die Analyse prüft die vorhandenen – und vor allem die nicht vorhandenen – Grundlagen dafür. Auf Basis dieser Transparenz kann dann eine übergeordnete KI-Strategie formuliert werden, die klare Ziele setzt und den gewünschten Nutzen definiert. So werden teure Fehlinvestitionen und -entwicklungen, falsche Erwartungen und die damit zwangsläufig verbundenen Enttäuschungen vermieden.

>> Die Prüfung der KI-Readiness: Basis der Analyse ist ein Framework, mit dem die operativen Kernbereiche eines Unternehmens abgefragt und analysiert werden. Dazu gehören in erster Linie die Daten, die Algorithmen, die Infrastruktur, die Organisation und die Governance. Für jeden dieser Bereiche werden die jeweiligen Stärken und Schwächen sowie die Chancen und Risiken identifiziert. Entscheidend sind dabei die vorhandenen Ressourcen wie strategische Skills, valide Use Cases, die Budget- und Personalsituation und der Stand der IT.

>> Die anschließende Analyse: Die Analyse deckt potenzielle Schwachstellen, Ressourcen-Engpässe oder Risiken bei der KI-Integration auf, seien sie nun technischer, rechtlicher, organisatorischer oder ethischer Natur. Dieses klare Bild des Status quo ist die Voraussetzung für eine realistische KI-Strategie und liefert gleichzeitig die Informationen, welche konkreten Schritte sich ableiten lassen. Daraus resultieren Empfehlungen, etwa für die Ressourcen-Optimierung oder den Aufbau noch nicht ausreichend vorhandener Fähigkeiten, aber auch für die Konzentration der Kräfte auf die vielversprechendsten KI-Aktivitäten. So werden in der KI-Reifegradanalyse auch genau die Geschäftsbereiche und -prozesse identifiziert, in denen KI den größten Beitrag leisten kann.

>> Regelmäßige Aktualisierung der Analyse: Angesichts der immensen Innovationsgeschwindigkeit im KI-Sektor ist eine wiederholte Analyse im Jahresrhythmus empfehlenswert. Sie ist einerseits wichtig, um den Stand der Fortschritte nachzuverfolgen, die Einhaltung der KI-Strategie oder die Investitionssicherheit der KI-Initiativen zu prüfen. Andererseits bekommen Unternehmen zusätzliche Impulse, etwa zum Finetuning durch die Einarbeitung aktueller Erfahrungen oder die Adaption zwischenzeitlich entwickelter KI-Innovationen.

>> Typische Erkenntnisse: Häufig wird die Einführung von KI zu technologisch und einzelfallorientiert angegangen. Anstatt die Vision und die übergeordneten Ziele in den Vordergrund zu stellen, liegt der Fokus oft zu sehr auf einzelnen Use Cases. Aktuell werden viele KI-Projekte entwickelt, ohne dass ihr tatsächlicher Wert für die jeweilige Abteilung oder das gesamte Unternehmen geklärt ist. Die KI-Lösungen sind daher zwar für eine spezifische Aufgabe nutzbar, aber häufig nicht auf andere Einsatzbereiche skalierbar, was sie ineffizient macht.

>> Konkrete Handlungsempfehlungen: Um tatsächlich nachhaltige Innovationen im Unternehmen zu schaffen, müssen die Projekte in eine umfassende KI-Strategie eingebettet werden. Häufig fehlt es an einer effektiven Koordination aller KI-Aktivitäten und der Fokus liegt zu sehr auf technologischen Themen. Wichtiger ist jedoch vielmehr die Entwicklung sinnvoller KI-Use-Cases. Ein zentrales Problem dabei ist die oft mangelhafte Datenqualität. Ab einem bestimmten Zeitpunkt ist es daher ratsam, über den Aufbau eines internen Center of Excellence nachzudenken, in dem das KI-Wissen gebündelt, Daten aufbereitet, KPIs formuliert und Projekte ROI-zentriert in einen sinnvollen Zusammenhang gebracht werden.

"Für die sinnvolle operative Nutzung Künstlicher Intelligenz trifft das zu, was für digitale Strategien im Allgemeinen gilt: Noch so viel Power nützt wenig, wenn sie nicht auf die Straße gebracht wird", erklärt Thomas Sengotta, Director Consulting bei CGI. "Die entscheidenden Erfolgsfaktoren für KI-Projekte sind daher eine enge Abstimmung zwischen Geschäfts- und IT-Prozessen, eine tiefgreifende Datenstrategie und eine hohe Geschäftsagilität." (CGI: ra)

eingetragen: 27.10.24
Newsletterlauf: 16.12.24

CGI: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Was Unternehmen beachten müssen

    Künstliche Intelligenz gehört für immer mehr Unternehmen ganz selbstverständlich zum Geschäftsalltag dazu. Insbesondere die generative KI (GenAI) erlebt einen Boom, den sich viele so nicht vorstellen konnten. GenAI-Modelle sind jedoch enorm ressourcenhungrig, sodass sich Firmen Gedanken über die Infrastruktur machen müssen. NTT DATA, ein weltweit führender Anbieter von digitalen Business- und Technologie-Services, zeigt, warum die Cloud der Gamechanger für generative KI ist.

  • SAP mit umfassender Cloud-Strategie

    Für die digitale Transformation von Unternehmen setzt SAP auf eine umfassende Cloud-Strategie. Hier bietet SAP verschiedene Lösungen an. Neben der SAP Public Cloud, die sehr stark auf den SME-Markt zielt, bedient die Industry Cloud als Kombination aus Private Cloud und industriespezifischen Cloud-Lösungen eher den LE-Markt.

  • Warum steigende IT-Kosten das kleinere Übel sind

    Es gibt Zeiten, in denen sind CIOs wirklich nicht zu beneiden. Zum Beispiel dann, wenn sie der Unternehmensführung wieder einmal erklären müssen, warum erneut höhere Investitionen in die IT nötig sind. Eines der größten Paradoxe dabei: Kosten steigen auf dem Papier auch dann, wenn eigentlich aus Kostengründen modernisiert wird. Der Umstieg vom eigenen Server im Keller in die Cloud? Mehrkosten. Neue SaaS-Lösungen?

  • Optimierung von Java-Workloads in der Cloud

    Cloud-Infrastrukturen versprechen Skalierbarkeit, Effizienz und Kostenvorteile. Doch um Engpässe zu vermeiden, überprovisionieren viele Unternehmen ihre Cloud-Kapazitäten - und bezahlen so oftmals für Ressourcen, die sie gar nicht nutzen. Wie lässt sich das ändern? Ein zentraler Hebel ist die Optimierung von Java-Workloads in der Cloud. Cloud-Infrastrukturen bringen viele Vorteile, aber auch neue Komplexität und oft unerwartet hohe Kosten mit sich. Bei vielen Unternehmen nehmen Java-Umgebungen und -Anwendungen große Volumina in gebuchten Cloud-Kapazitäten ein, denn Java gehört noch immer zu den beliebtesten Programmiersprachen: Laut dem aktuellen State of Java Survey and Report 2025 von Azul geben 68 Prozent der Befragten an, dass über 50 Prozent ihrer Anwendungen mit Java entwickelt wurden oder auf einer JVM (Java Virtual Machine) laufen.

  • Wer Cloud sagt, muss Datensouveränität denken

    Die Cloud hat sich längst zu einem neuen IT-Standard entwickelt. Ihr Einsatz bringt allerdings neue Herausforderungen mit sich - insbesondere im Hinblick auf geopolitische Risiken und die Gefahr einseitiger Abhängigkeiten. Klar ist: Unternehmen, Behörden und Betreiber kritischer Infrastrukturen benötigen eine kompromisslose Datensouveränität. Materna Virtual Solution zeigt, welche zentralen Komponenten dabei entscheidend sind.

  • Fünf Mythen über Managed Services

    Managed Services sind ein Erfolgsmodell. Trotzdem existieren nach wie vor einige Vorbehalte gegenüber externen IT-Services. Die IT-Dienstleisterin CGI beschreibt die fünf hartnäckigsten Mythen und erklärt, warum diese längst überholt sind.

  • KI-Herausforderung: Mehr Daten, mehr Risiko

    Künstliche Intelligenz (KI) revolutioniert weiterhin die Geschäftswelt und hilft Unternehmen, Aufgaben zu automatisieren, Erkenntnisse zu gewinnen und Innovationen in großem Umfang voranzutreiben. Doch es bleiben Fragen offen, vor allem wenn es um die Art und Weise geht, wie KI-Lösungen Daten sicher verarbeiten und bewegen. Einem Bericht von McKinsey zufolge gehören Ungenauigkeiten in der KI sowie KI-Cybersecurity-Risiken zu den größten Sorgen von Mitarbeitern und Führungskräften.

  • Sichere Daten in der Sovereign Cloud

    Technologie steht im Mittelpunkt strategischer Ambitionen auf der ganzen Welt, aber ihr Erfolg hängt von mehr als nur ihren Fähigkeiten ab. Damit Dienste effektiv funktionieren, braucht es eine Vertrauensbasis, die den Erfolg dieser Technologie untermauert und eine verantwortungsvolle Speicherung der Daten, Anwendungen und Dienste gewährleistet.

  • Integration von Cloud-Infrastrukturen

    Cloud-Technologien werden zum Schlüsselfaktor für Wachstum und verbesserte Skalierbarkeit über das Kerngeschäft hinaus - auch bei Telekommunikationsanbietern (Telcos). Auch hier ist der Wandel zur Nutzung von Produkten und Dienstleistungen "On-Demand" im vollen Gange, sodass Telcos ihre Geschäftsmodelle weiterentwickeln und zunehmend als Managed-Service-Provider (MSPs) und Cloud-Service-Provider (CSPs) auftreten.

  • Acht Einsatzszenarien für Industrial AI

    Artificial Intelligence (AI) entwickelt sich zunehmend zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42?Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein - ein weiteres Drittel (35?Prozent) plant entsprechende Projekte.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen