Sie sind hier: Startseite » Markt » Hintergrund

Fünf Trends, die Edge vorantreiben


Edge Computing avanciert zum gewichtigen Pendant der Cloud
Die Edge-Technologie kommt auch weiterhin dort zum Einsatz, wo es keine zuverlässige Netzwerkverbindung gibt oder der Datentransfer schlicht zu teuer wäre


Das Bild der primitiven Edge, die bloß Daten weiterleitet, ist überholt. Denn Edge Computing spielt in den verteilten Infrastrukturen des Internet of Things (IoT) eine zunehmend wichtige Rolle. Dabei funktioniert die Technologie nach folgendem Prinzip: Lokale Geräte verarbeiten Daten wie Sensormesswerte direkt und führen eine Geschäftslogik aus, ohne Daten an einen Server zu übertragen. Eine Edge Runtime stellt hierfür die Funktionen für die Endgeräte bereit und steuert auf ihnen Module, beispielsweise Container. Die Kommunikation zwischen den Modulen und dem IoT-Hub in der Cloud übernimmt der Edge Hub. Auf diese Weise lässt sich die Peripherie lokal und ohne permanente Internetverbindung steuern. Das System performt schneller und besser, da weniger Daten durch das Netzwerk müssen. Relevante Analyseergebnisse gehen zu einem späteren Zeitpunkt an den Cloud-Server, sobald eine Internetverbindung besteht.

Die Edge-Technologie kommt auch weiterhin dort zum Einsatz, wo es keine zuverlässige Netzwerkverbindung gibt oder der Datentransfer schlicht zu teuer wäre. Dabei steigt die Edge zu einem Cloud-Pendant auf, das immer mehr an Gewicht gewinnt. Das liegt an der voranschreitenden Vernetzung. Denn die "IoTisierung" führt zu Szenarien, die Standardgeräte bei Weitem überfordern. Beispielsweise können diese eben nicht die 300 Sensoren eines Flugzeugtriebwerks im Flug überwachen, da dies die Datenanalyse und die Ableitung von Entscheidungen in Echtzeit einschließt.

Es zeichnen sich fünf Aspekte ab, welche die Edge-Technologie weiter vorantreiben:

1. Angebot an Hochleistungsrechnern wächst und löst Trend aus
Hersteller wie NVIDIA und Intel investieren viel, um hochleistungsfähige Computer herstellen zu können. Diese kleinen und schnellen Superrechner sind bereit für komplexere Anwendungsfälle an der Edge. Softwareanbieter verschaffen deren hohe Rechenleistung und Speicherkapazität ganz neue Möglichkeiten.

Bereits heute können schlanke Edge Runtimes, die Edge Agents, mit wenig Rechenleistung und Speicherbedarf intelligente Datenpipeline-Orchestrierungsflüsse realisieren. Jene Edge Agents sammeln über zahlreiche Protokolle Daten von Geräten, damit Module auf den Devices die Daten verarbeiten, Schlüsselinformationen extrahieren und bei Bedarf ein lokales Machine-Learning-(ML)-Modell ausführen. Über einen Agenten-Management-Hub lassen sich tausende Agenten verwalten und überwachen. Dabei vereinfachen codefreie Benutzeroberflächen wie Cloudera Edge Management (CEM) es, komplexe Datenflüsse der Agentenschar zu designen. Auf diese Weise lässt sich einfach steuern, wie sich ein Agent verhalten soll – egal, an welchem Ort. Das Agenten-Management bindet ein Unternehmen am besten in eine Edge-to-Cloud-Data-in-Motion-Plattform ein. Denn so kann es die Richtlinien für Sicherheit und Governance einheitlich durchsetzen.

Die Mini-Supercomputer in der IoT-Peripherie befähigen dazu, in neue Leistungsdimensionen vorzustoßen – und den Trend zum "föderalen Data Lake" an der Edge auszulösen. Wichtige geschäftskritische Entscheidungen fallen daher demnächst verstärkt an der Edge.

2. Machine Learning und künstliche Intelligenz rücken näher an die Edge
Schon heute verfügen leistungsstarken Edge-Rechner über Grafikprozessoren (GPUs), um ML- und Künstliche-Intelligenz-(KI)-Modelle ausführen zu können. Der Bedarf nach solchen Anwendungen ist da und wird zukünftig noch steigen. Man denke beispielsweise nur an anspruchsvollere Anwendungsfälle im Gesundheitswesen zur Patientenüberwachung oder in der Fertigung zur Qualitätskontrolle – die KI verlagert sich so sukzessive an die Edge.

3. An der Edge beginnt die digitale Transformation
Viele Unternehmen initiieren schon seit Jahren Digitalprojekte. Dabei zeigt sich, dass sie immer mehr an der Edge ansetzen – ganz gleich, ob ein Mineralölkonzern die Protokolldateien von 130K-Maschinen verarbeiten will oder eine Airline die vorausschauende Wartung der Bordkartendrucker angeht und dafür Edge-Agenten installiert. Beide Anwendungsfälle eint: Die geschäftliche Notwendigkeit, entweder Kosten zu senken oder die betriebliche Effizienz zu steigern, löst eine Transformation aus – und endet zusehends in einer Edge-Initiative.

4. Autonomes Fahren als Entwicklungsmotor und Blaupause
Derzeit arbeiten die führenden Automobilhersteller intensiv an vernetzten und autonomen Autos. Dabei liefern sie sich ein spannendes Wettrennen mit Tech-Konzernen und Start-ups. Solche Mobilitätskonzepte schieben die Entwicklung von Edge Computing zusätzlich an. Denn diese sind davon abhängig, wie sich die Datenverarbeitung, Speicherung und ML-Modellanreicherung an der Edge weiter verbessern. Anhand dieser Entwicklungen können andere Branchen sehen, was an komplexen Szenarien umsetzbar ist. Dadurch sind sie in der Lage, autonome Anwendungsfälle für ihre eigenen Belange zu entwickeln.

5. Bedarf an sofortigen Erkenntnissen wächst
Ob für die Click-Stream-Analyse von Benutzern auf einer Website oder die Betrugserkennung bei der Kreditkartennutzung: Schon heute verlangen viele Anwendungsfälle Echtzeit-Einblicke, die sofort Erkenntnisse liefern – und dieser Bedarf wird steigen. Unternehmen versuchen sogar, von prädiktiven Analysen, die auf historischen und Echtzeit-Daten basieren, auf präskriptive Analysen umzustellen. Damit lässt sich prognostizieren, welche Ereignisse (nicht) eintreten und wie man darauf am besten reagiert. Auch dadurch entsteht ein starker Bedarf nach mehr Intelligenz an der Edge. Denn die Daten sollen nicht veraltet sein, wenn sie den Data Lake erreichen. Daher muss die Verarbeitung der Daten an der Edge erfolgen – oder zumindest lange bevor sie am Data Lake ankommen.

Perfekte Perspektive für die Peripherie
Im Vergleich zu heute werden wir in fünf Jahren eine weitaus leistungsstärkere und intelligentere Edge sehen. Diese verfügt dann über sehr viel mehr Rechenleistung und Speicherplatz, weshalb es zu einer Trennung zwischen Edge, Rechenzentrum und Cloud kommt. Unternehmen müssen sich deshalb auf Herausforderungen bei der Datenkonsolidierung einstellen. Mehrere Ökosysteme werden darauf setzen, Daten direkt von der Peripherie verarbeiten zu lassen, wozu das System Zugriffsrechte braucht. KI und ML werden in der Lage sein, anspruchsvollere autonome Anwendungsfälle umzusetzen. Bei all dem nimmt das Datenmanagement eine Schlüsselrolle ein, was nur beunruhigend wäre, wenn man es als Randerscheinung abtun würde. (Cloudera: ra)

eingetragen: 14.08.20
Newsletterlauf: 12.10.20

Cloudera: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>



Meldungen: Hintergrund

  • Anwendungsfälle für KI

    Unternehmen erleben heute mit der Künstlichen Intelligenz (KI) einen Déjà-vu-Moment. Ähnlich wie bei früheren Technologiesprüngen - dem Aufkommen des PCs, des Internets oder der Cloud-Technologie - stehen sie an einem Wendepunkt, an dem die breite Einführung von KI die Unternehmenslandschaft transformiert.

  • Vom Kreditinstitut zur Technologie-Oase

    Wir schreiben das Jahr 2035: Sie wachen auf und überprüfen Ihre Finanzen über einen sprachaktivierten digitalen Assistenten, der als Hologramm von Elvis erscheint. Nach der Authentifizierung durch Stimm- und Fingerabdruck-Biometrie liefert Ihnen der verstorbene King of Rock'n'Roll einen Überblick über Ihre Ausgaben, Ersparnisse und Investitionen in einem personalisierten Dashboard, das alle Ihre Konten und Finanzdaten an einem Ort zusammenfasst.

  • Cloud-Drucklösungen spielen eine große Rolle

    Heutzutage lässt sich technischer Fortschritt kaum mehr mit dem bloßen Auge erkennen. Selten vergeht ein Tag ohne eine weitere Innovation, die für mehr Effizienz sorgt. Diese Entwicklung macht auch vor Druckern nicht Halt. Cloud-Lösungen ermöglichen zentrale Administration und Kosteneinsparungen bei lokalen Servern. Doch in diesem Zusammenhang geht die Tendenz eher in Richtung langsamer Wechsel in die Wolke. Warum ist das so? "In vielen Unternehmen - insbesondere aus Branchen, in denen sensible Daten auf der Tagesordnung stehen - herrschen Sicherheits- und Datenschutzbedenken.

  • Finanzbranche steht vor einem Wendepunkt

    Immer mehr traditionelle Banken erkennen endlich die Vorteile des Outsourcings, um ihren Weg zur Digitalisierung zu beschleunigen und so ihre Effizienz und Kundenzufriedenheit zu optimieren. In Deutschland bremsen jedoch regulatorische Anforderungen das Tempo der Transformation. Karl im Brahm, CEO von Objectway DACH, betont, dass Banken diese Hürden nur durch Kooperationen mit Fintechs überwinden können.

  • CPUs und DSAs für Cloud- und KI-Erfolg

    Die Chimäre ist in der griechischen Mythologie eine Kreuzung aus Löwe, Ziege und Schlange. Sie hat den Kopf des Löwen, den Körper der Ziege mit einem weiteren Ziegenkopf auf dem Rücken und den Schwanz der Schlange

  • Vertrauen gegenüber Generative AI schwindet

    Im letzten Jahr zeigten sich deutsche Unternehmen wenig beeindruckt von den Sicherheitsrisiken von ChatGPT und Co. Sie vertrauten den vielversprechenden Generative-AI-Anwendungen und ihren Vorteilen bedingungslos. Nun legen die Ergebnisse einer aktuellen Gigamon-Studie* jedoch nahe, dass die Skepsis gegenüber diesen Tools in den vergangenen zwölf Monaten zugenommen hat.

  • Bedeutung der Cyber-Sicherheit

    Wie in jedem Jahr, so hat auch in diesem die Firma IBM zusammen mit dem Ponemon Institute die Studie Cost of a Data Breach 2024 veröffentlicht. Die Ergebnisse sprechen Bände: Mit 4,88 Millionen US-Dollar (rund 4,50 Millionen Euro) je Sicherheitsverletzung im weltweiten Durchschnitt liegen diese Kosten 10 Prozent über dem Jahr 2023 mit 4,5 Millionen US-Dollar (rund 4,16 Millionen Euro) und erreichen ein Rekord-Hoch.

  • Sicherheit in der Cloud

    Der Cloud Computing-Markt wächst beständig weiter und ein Ende dieses Aufwärtstrends scheint nicht in Sicht zu sein. Laut Prognosen könnte er bis 2032 die Marke von gut 2,29 Milliarden US-Dollar knacken. Das würde einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 16,5 Prozent entsprechen.

  • Demokratisierung der Künstlichen Intelligenz

    Open Source basiert auf Zusammenarbeit und Transparenz. Dank dieser beiden unbestreitbaren Vorteile haben Open-Source-Lösungen das Potenzial, die Art und Weise zu revolutionieren, wie KI-Systeme entwickelt und eingesetzt werden. Ein offener Ansatz für Künstliche Intelligenz ist unerlässlich.

  • Wie KI den Customer Service revolutioniert

    Die IT-Branche ist ein Umfeld des ständigen Wettbewerbs. CIOs treiben heute die digitale Transformation voran und investieren in digitale Technologien, um die Effizienz und Rendite ihres Unternehmens zu maximieren. Da sie dafür nur wenig Zeit und Ressourcen für IT-Services aufwenden möchten, wenden sie sich immer mehr der generativen KI zu.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen