Sie sind hier: Startseite » Markt » Tipps und Hinweise

Auswahl einer Cloud-Data-Warehouse-Lösung


Datenschätze in den Wolken: Best Practices für Cloud Data Warehouses
Unterschiede zwischen traditionellen und Cloud Data Warehouses


Von Rob Mellor, VP und GM EMEA, WhereScape

Die Cloud bietet Unternehmen zahlreiche Vorteile und sorgt auch im Bereich Data Warehousing für hohe Skalierbarkeit und Flexibilität. Da es mittlerweile notwendig ist, Daten aus einer Vielzahl sich ständig weiterentwickelnden Datenquellen effizient zusammenzuführen und sie auf einfache Weise einem immer breiteren Kreis an Entscheidungsträgern zugänglich zu machen, haben deshalb viele Data-Warehousing-Teams begonnen, ihre Data-Warehouse-Bemühungen auf die Cloud umzustellen.

Ein Cloud Data Warehouse ist ein Datenbankservice, der online von einem Public-Cloud-Anbieter gehostet wird. Es verfügt über die Funktionalität einer On-Premises-Datenbank, wird jedoch von einer Drittpartei verwaltet, kann per Fernzugriff aufgerufen werden, und sein Speicher und seine Rechenleistung können bei Bedarf sofort verkleinert oder erweitert werden.

Ein traditionelles Data Warehouse ist eine Architektur für die Organisation, Speicherung und den Zugriff auf angeforderte Daten, die On-Premises in einem Rechenzentrum des Unternehmens gehostet wird. Das klassische Data Warehouse hat eine endliche Größe und Leistung und befindet sich im Besitz der Organisation, deren Daten darin gespeichert sind.

Ein Cloud Data Warehouse bietet ein flexibles Volumen an Speicher- und Rechenleistung, ist Teil eines Public-Cloud-Rechenzentrums, online zugänglich und wird extern verwaltet. Die Speicher- und Rechenleistung wird lediglich gemietet. Sein physischer Standort ist weitgehend irrelevant, außer für Länder und/oder Branchen, deren Regularien vorschreiben, dass Daten im selben Land des jeweiligen Unternehmens gespeichert werden müssen.

Fünf Vorteile von Cloud Data Warehouses
Die Vorteile eines Cloud Data Warehouses lassen sich in fünf Kernpunkten zusammenfassen:

1. Zugang
Anstatt nur physischen Zugang zu Datenbanken in Rechenzentren zu haben, kann auf Cloud Data Warehouses von jedem beliebigen Ort aus zugegriffen werden. Mitarbeiter können bei Bedarf auch von zu Hause aus oder außerhalb der Geschäftszeiten Fehler beheben. Dieser flexible Zugriff bedeutet zudem, dass Unternehmen Fachkräfte auch ortsungebunden einstellen können, was Talentpools eröffnet, die zuvor nicht verfügbar waren.

2. Kosten
Rechenzentren sind teuer in Anschaffung und Unterhalt. Die Gebäude, in denen sie untergebracht werden, müssen entsprechend gekühlt und versichert werden, es benötigt fachkundiges Personal, und die Datenbanken selbst sind mit enormen Kosten verbunden. Mit Cloud Data Warehousing kann derselbe Service in Anspruch genommen werden, jedoch zahlen Unternehmen nur für die Rechen- und Speicherleistung, die sie benötigen und wenn sie sie benötigen. Bei elastischen Cloud-Diensten wie beispielsweise Snowflake können Rechen- und Speicherleistung auch separat und in unterschiedlichen Mengen gekauft werden. Unternehmen müssen dabei nur für das bezahlen, was sie wirklich nutzen, und können Funktionen, die sie nicht mehr benötigen, sofort schließen oder verkleinern.

3. Leistung
Anbieter von Cloud-Diensten konkurrieren darum, die Nutzung der leistungsfähigsten Hardware für einen Bruchteil der Kosten anzubieten, die für die Reproduktion einer solchen Leistung On-Premises anfallen würden. Upgrades werden automatisch durchgeführt, sodass Unternehmen immer über die neuesten Funktionen verfügen und keine Ausfallzeiten beim Upgrade auf die neueste „Version“ erleben. Einige On-Premises-Datenbanken bieten eine schnellere Performance, jedoch nicht zu den Kosten und der Verfügbarkeit des Infrastructure-as-a-Service (IaaS), die Cloud-Anbieter ermöglichen.

4. Skalierbarkeit
Die Eröffnung eines Cloud Data Warehouse ist so einfach wie die Eröffnung eines Kontos bei einem Anbieter wie Microsoft Azure, AWS Redshift, Google BigQuery oder Snowflake. Das Konto kann erweitert und verkleinert oder sogar sofort wieder geschlossen werden. Die Benutzer sind sich zudem der entsprechenden Kosten bewusst, bevor sie die Menge des gemieteten Storage ändern. Diese Skalierbarkeit hat zur Prägung des Begriffs „Elastic Cloud“ geführt.

5. Unabhängigkeit
Das Hosten von Daten in einem Cloud Data Warehouse bedeutet, dass Unternehmen den Anbieter wechseln können, wenn es zu Änderungen ihrer Geschäftsstrategie passt. Bleiben Unternehmen datenbankunabhängig, haben sie die Flexibilität, ihre Datenbank zu vergrößern, zu verkleinern oder komplett zu wechseln. Mit metadatengesteuerter Automatisierungssoftware können Unternehmen zudem ganze Dateninfrastrukturen auf Wunsch aus dem Cloud Data Warehouse extrahieren, hinein verschieben sowie verschiedenen Teams innerhalb desselben Unternehmens ermöglichen, mit der Datenbank und der hybriden Cloud-Struktur zu arbeiten, die ihren Anforderungen am besten entspricht.

Auswahl einer Cloud-Data-Warehouse-Lösung
Eine Kostenanalyse ist unerlässlich, um abzuschätzen, wie viel Geld ein Cloud Data Warehouse dem Unternehmen sparen würde. Verschiedene Cloud-Anbieter haben unterschiedliche Preisstrukturen, die berücksichtigt werden müssen. Etabliertere Anbieter wie Amazon und Microsoft mieten Knoten und Cluster, sodass ein Unternehmen einen definierten Teil des Servers nutzt. Dadurch wird die Preisgestaltung vorhersehbar und konstant, jedoch ist manchmal die Wartung des jeweiligen speziellen Knotens erforderlich.

Snowflake und Google bieten ein serverloses System an, was bedeutet, dass die Standorte und die Anzahl der Cluster nicht definiert und somit irrelevant sind. Stattdessen wird dem Kunden genau die Menge an Rechen- oder Verarbeitungsleistung in Rechnung gestellt, die er verbraucht. In größeren Unternehmen ist es jedoch oft schwierig, die Anzahl der Nutzer und die Größe eines Prozesses vorherzusagen, bevor er stattfindet. Es ist möglich, dass die Anfragen viel größer sind und viel mehr kosten als erwartet.

Jeder Cloud-Anbieter hat seine eigene Suite von unterstützenden Tools für Funktionen wie Datenmanagement, Visualisierung und Predictive Analytics, sodass diese besonderen Bedürfnisse bei der Entscheidung für einen Anbieter berücksichtigt werden sollten.

Die Verwendung von Cloud-basierten Data-Warehouse-Plattformen bedeutet, dass Unternehmen noch mehr Daten aus einer Vielzahl von Datenquellen sammeln und sofort und elastisch skalieren können, um praktisch unbegrenzt Benutzer und Arbeitslasten zu unterstützen. Mit der Fähigkeit, den Zustrom großer Datenmengen zu verwalten und durch Automatisierung die Investitionsrentabilität zu steigern, können Unternehmen den Zustrom großer Datenmengen bewältigen, manuelle Prozesse automatisieren und die Rentabilität der Cloud maximieren. (WhereScape: ra)

eingetragen: 23.10.20
Newsletterlauf: 02.12.20

WhereScape: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Was Unternehmen beachten müssen

    Künstliche Intelligenz gehört für immer mehr Unternehmen ganz selbstverständlich zum Geschäftsalltag dazu. Insbesondere die generative KI (GenAI) erlebt einen Boom, den sich viele so nicht vorstellen konnten. GenAI-Modelle sind jedoch enorm ressourcenhungrig, sodass sich Firmen Gedanken über die Infrastruktur machen müssen. NTT DATA, ein weltweit führender Anbieter von digitalen Business- und Technologie-Services, zeigt, warum die Cloud der Gamechanger für generative KI ist.

  • SAP mit umfassender Cloud-Strategie

    Für die digitale Transformation von Unternehmen setzt SAP auf eine umfassende Cloud-Strategie. Hier bietet SAP verschiedene Lösungen an. Neben der SAP Public Cloud, die sehr stark auf den SME-Markt zielt, bedient die Industry Cloud als Kombination aus Private Cloud und industriespezifischen Cloud-Lösungen eher den LE-Markt.

  • Warum steigende IT-Kosten das kleinere Übel sind

    Es gibt Zeiten, in denen sind CIOs wirklich nicht zu beneiden. Zum Beispiel dann, wenn sie der Unternehmensführung wieder einmal erklären müssen, warum erneut höhere Investitionen in die IT nötig sind. Eines der größten Paradoxe dabei: Kosten steigen auf dem Papier auch dann, wenn eigentlich aus Kostengründen modernisiert wird. Der Umstieg vom eigenen Server im Keller in die Cloud? Mehrkosten. Neue SaaS-Lösungen?

  • Optimierung von Java-Workloads in der Cloud

    Cloud-Infrastrukturen versprechen Skalierbarkeit, Effizienz und Kostenvorteile. Doch um Engpässe zu vermeiden, überprovisionieren viele Unternehmen ihre Cloud-Kapazitäten - und bezahlen so oftmals für Ressourcen, die sie gar nicht nutzen. Wie lässt sich das ändern? Ein zentraler Hebel ist die Optimierung von Java-Workloads in der Cloud. Cloud-Infrastrukturen bringen viele Vorteile, aber auch neue Komplexität und oft unerwartet hohe Kosten mit sich. Bei vielen Unternehmen nehmen Java-Umgebungen und -Anwendungen große Volumina in gebuchten Cloud-Kapazitäten ein, denn Java gehört noch immer zu den beliebtesten Programmiersprachen: Laut dem aktuellen State of Java Survey and Report 2025 von Azul geben 68 Prozent der Befragten an, dass über 50 Prozent ihrer Anwendungen mit Java entwickelt wurden oder auf einer JVM (Java Virtual Machine) laufen.

  • Wer Cloud sagt, muss Datensouveränität denken

    Die Cloud hat sich längst zu einem neuen IT-Standard entwickelt. Ihr Einsatz bringt allerdings neue Herausforderungen mit sich - insbesondere im Hinblick auf geopolitische Risiken und die Gefahr einseitiger Abhängigkeiten. Klar ist: Unternehmen, Behörden und Betreiber kritischer Infrastrukturen benötigen eine kompromisslose Datensouveränität. Materna Virtual Solution zeigt, welche zentralen Komponenten dabei entscheidend sind.

  • Fünf Mythen über Managed Services

    Managed Services sind ein Erfolgsmodell. Trotzdem existieren nach wie vor einige Vorbehalte gegenüber externen IT-Services. Die IT-Dienstleisterin CGI beschreibt die fünf hartnäckigsten Mythen und erklärt, warum diese längst überholt sind.

  • KI-Herausforderung: Mehr Daten, mehr Risiko

    Künstliche Intelligenz (KI) revolutioniert weiterhin die Geschäftswelt und hilft Unternehmen, Aufgaben zu automatisieren, Erkenntnisse zu gewinnen und Innovationen in großem Umfang voranzutreiben. Doch es bleiben Fragen offen, vor allem wenn es um die Art und Weise geht, wie KI-Lösungen Daten sicher verarbeiten und bewegen. Einem Bericht von McKinsey zufolge gehören Ungenauigkeiten in der KI sowie KI-Cybersecurity-Risiken zu den größten Sorgen von Mitarbeitern und Führungskräften.

  • Sichere Daten in der Sovereign Cloud

    Technologie steht im Mittelpunkt strategischer Ambitionen auf der ganzen Welt, aber ihr Erfolg hängt von mehr als nur ihren Fähigkeiten ab. Damit Dienste effektiv funktionieren, braucht es eine Vertrauensbasis, die den Erfolg dieser Technologie untermauert und eine verantwortungsvolle Speicherung der Daten, Anwendungen und Dienste gewährleistet.

  • Integration von Cloud-Infrastrukturen

    Cloud-Technologien werden zum Schlüsselfaktor für Wachstum und verbesserte Skalierbarkeit über das Kerngeschäft hinaus - auch bei Telekommunikationsanbietern (Telcos). Auch hier ist der Wandel zur Nutzung von Produkten und Dienstleistungen "On-Demand" im vollen Gange, sodass Telcos ihre Geschäftsmodelle weiterentwickeln und zunehmend als Managed-Service-Provider (MSPs) und Cloud-Service-Provider (CSPs) auftreten.

  • Acht Einsatzszenarien für Industrial AI

    Artificial Intelligence (AI) entwickelt sich zunehmend zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42?Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein - ein weiteres Drittel (35?Prozent) plant entsprechende Projekte.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen