Sie sind hier: Startseite » Markt » Tipps und Hinweise

Das Datenvolumen wächst ständig


IT-Teams stehen in verteilten Umgebungen in der Cloud und vor allem in Hybrid-Cloud-Szenarien vor erheblichen Aufgaben, um Daten zu sichern und verfügbar zu halten
Fünf Disziplinen, in denen Künstliche Intelligenz und Machine Learning eine cyberresiliente Datensicherung automatisieren und verbessern


Von Uli Simon, Director Sales Engineering bei Commvault

Daten cyberresilient zu schützen, zu sichern und wiederherstellen zu können, ist für große Unternehmen oder für den gehobenen Mittelstand eine Aufgabe, die ohne den Einsatz von Künstlicher Intelligenz oder Machine Learning nicht mehr zu bewältigen ist. KI und ML helfen einerseits, sensible Datenbestände zu identifizieren und sie vor Cyberangriffen zu schützen. Andererseits rationalisieren und automatisieren sie die Sicherung von Daten in einer einheitlichen Datenplattform eines Unternehmens.

IT-Teams stehen in verteilten Umgebungen in der Cloud und vor allem in Hybrid-Cloud-Szenarien vor erheblichen Aufgaben, um Daten zu sichern und verfügbar zu halten. Sie kommen aber nicht mehr damit nach, alle dafür nötigen Informationen zu sichten und zu bewerten. Knappe Ressourcen und eingeschränkte Budgets können die Situation verschärfen, Denn auch bei geringeren Mitteln ist nur selten weniger und in der Regel eher mehr durch weiterwachsende Datenmengen oder komplexere Umgebungen zu leisten. Mit einer fortschrittlichen Plattform, die auf KI- und ML-Techniken basiert, können IT-Administratoren jedoch die Effizienz und Resilienz Ihrer Plattform erheblich verbessern. Data-Management-Plattformen lassen sich durch diese Technologien besser überwachen, ihr Betrieb in großem Umfang automatisieren und die Betriebsbereitschaft verbessern.

Disziplin 1: Abläufe automatisieren
Das Datenvolumen wächst ständig, die verfügbare Zeit, sie täglich zu sichern, bleibt begrenzt. Schließlich hat auch ein IT-Tag nur 24 Stunden. Herkömmliche Backup-Pläne beruhen auf statischen Regeln und daraus abgeleiteten Zeitplänen, um Daten so effizient und schnell wie möglich zu sichern. Herkömmliche statistische Ansätze, um Backup-Jobs zu planen, führen häufig zu komplexen Konfigurationen und Ineffizienzen, wenn die Wartezeiten für einen Job zu lange werden oder dieser das für ihn vorgesehene Zeitfenster überschreitet. Eine KI- und ML-unterstützte Backup-Plattform sagt durch den Einsatz von auf chronologischen, seriellen Daten aufbauendem maschinellem Lernen die einzelnen Laufzeiten der Jobs besser voraus und plant diese effizienter. Mit der Kalkulation der gewünschten Recovery Point Objectives (RPOs) bewertet sie Workloads nach den Kriterien der Geschäftsabläufe und stellt sicher, dass jeder Workload die entsprechende Priorität erhält. Dank solcher Automatismen können die IT-Teams die Zeitfenster für die Datensicherung minimieren, ohne selbst entscheiden zu müssen.

Disziplin 2: Ressourcenbedarf kalkulieren
Bei steigender Datenmenge muss eine Plattform zum Backup mit dem Datenwachstum skalieren, was zusätzliche Rechen- und Speicherressourcen erforderlich macht. Datenbestände können – freilich seltener - auch schrumpfen, etwa bei international tätigen Unternehmen, die sich aus geschäftlichen Gründen regional verkleinern. Ein solches Anpassen des Speicherbedarfs können IT-Administratoren nicht manuell vornehmen. Automatismen sind nötig, damit die Infrastrukturkosten nicht aufgrund einer verzögerten Entscheidung steigen. Machine-Learning-Techniken bewerten den zukünftigen Ressourcenbedarf in Echtzeit, indem sie die Trends des Datenwachstums analysieren und die erforderlichen Rechenressourcen zum Einhalten der definierten Service Level Agreements (SLAs) vorhersagen. Sie passen automatisch die Rechenressourcen je nach Bedarf an oder geben Hinweise, wenn ein Zukauf nötig ist.

Disziplin 3: Ressourcenauswahl optimieren
Darüber hinaus optimiert eine KI-gestützte Plattform die Auswahl von Rechenressourcen und berücksichtigt dabei, wie die Daten regional verteilt sind oder von wo sie etwa Standorte abrufen. So nutzt sie Rechenknoten effizient und schafft eine ausgewogen belastete und kostenoptimierte IT-Infrastruktur. Vor allem in der Hybrid Cloud kommt es darauf an, Ressourcen richtig zu verteilen.

Disziplin 4: Rationalisiert überwachen
Große IT-Infrastrukturen sind komplex und nicht alle Ereignisse lassen sich daher vorhersehen. IT-Verantwortliche können die alltäglichen Abläufe nicht mehr oder nicht korrekt überwachen. Nur wenige Fehler treten lediglich vorübergehend auf oder sind eine Routine-Angelegenheit und lassen sich ohne sofortiges menschliches Eingreifen beheben. Andere erfordern die Aufmerksamkeit von Fachkräften. Derart kritische Fehler bleiben aber ohne priorisierte und gefilterte Meldungen zu lange unentdeckt. KI- und ML-gestützte Plattformen sammeln daher kontinuierlich Daten aus den verschiedenen täglichen Backup-Vorgängen, analysieren sie und lernen, wie ein typisches Verhalten eines funktionierenden Backups sich darstellt. Machine-Learning-Algorithmen analysieren diese Daten, um zu unterscheiden, ob es sich bei länger dauernden Jobs oder abnehmender Leistung um eine Ausnahme, um das Ergebnis eines externen Ereignisses oder um ein erwartetes Ergebnis aufgrund der zunehmenden Größe und des Umfangs der Daten handelt. Die intelligente Analyse hebt Vorgänge hervor, die sich ein IT-Administrator anschauen sollte, und bietet ihm umfassende Informationen, um Fehler zu beheben oder kritische Probleme zu lösen. Bei Anomalien, wie ungewöhnlich hohen Ausfallraten oder verzögert abgeschlossenen Jobs, löst das System intelligent einen Alarm aus, so dass sich die Administratoren auf kritische Probleme konzentrieren können.

Disziplin 5: Sich operativ vorbereiten
Eine gut aufgestellte Datensicherung ist eine unverzichtbare Grundlage, um im Ernstfall die Daten schnell und effizient wiederherzustellen. Benutzer können dank KI und ML optimale Recovery Time Objectives und Recovery Point Objectives definieren und erhalten Alarme, wenn vordefinierte Service Level Agreements zur Datenverfügbarkeit eventuell nicht mehr eingehalten werden. Das gilt insbesondere in einer hybriden Cloud, in der es zu unerwarteten Problemen in der Hardware-Supply-Chain kommen kann. KI und ML vereinfachen und verbessern die Beschaffungsprozesse, indem die Technologie maschinelles Lernen einsetzt, um Muster zum Verbrauch aus der Vergangenheit zu analysieren, saisonale Faktoren zu berücksichtigen und den zukünftigen Speicherbedarf vorherzusagen. So haben die IT-Verantwortlichen genügend Zeit, um zu reagieren und Kapazitäten hinzuzufügen.

Eine Technologie der Gegenwart
Eine praxisbezogene Künstliche Intelligenz und maschinelles Lernen helfen schon jetzt, Daten automatisiert zu sichern sowie wiederherzustellen, und tragen zur Cyberresilienz von Datenplattformen bei. Das verbessert auch konkret den Backupbetrieb von der Planung bis hin zur kontinuierlichen Fehlersuche. Erst KI und Machine Learning ermöglichen automatisierte Abläufe mit hinreichender Sicherheit. Diese Technologien sind nicht nur Konzepte für die Zukunft. Sie sind verfügbar und können schon heute operativ eingesetzt werden. (Commvault: ra)

eingetragen: 20.01.24
Newsletterlauf: 04.04.24

CommVault: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>


Meldungen: Tipps und Hinweise

  • Sicher modernisieren & Daten schützen

    Viele Unternehmen haben die Cloud-Migration ihrer SAP-Landschaften lange Zeit aufgeschoben. ERP-Anwendungslandschaften, sind über viele Jahre hinweg gewachsen, die Verflechtungen vielfältig, die Datenmengen enorm und die Abhängigkeit der Business Continuity von diesen Systemen gigantisch. Dennoch: Der Druck zur ERP-Modernisierung steigt und viele Unternehmen werden 2025 das Projekt Cloud-Migration mit RISE with SAP angehen.

  • Was tun mit ausgedienten Rechenzentren?

    Rund um die Jahrtausendwende begann in Deutschland ein wahrer Bauboom für Datacenter und Colocation-Flächen. Viele dieser Anlagen befinden sich auch heute noch in Betrieb. Doch die rasante Entwicklung der Informationstechnologie führt dazu, dass Rechenzentren in immer kürzeren Abständen modernisiert oder ersetzt werden müssen. Denn wann immer ein Betreiber den Spatenstich für ein neues Datacenter feiert, dürfen die Begriffe "Nachhaltigkeit" und "Umweltschutz" nicht fehlen.

  • Tipps für MSPs im Jahr 2025

    Ob durch technologische Innovationen, geschicktes Marketing oder eine starke Unternehmenskultur - mit den richtigen Maßnahmen können MSPs im Jahr 2025 nicht nur ihre Wettbewerbsfähigkeit steigern, sondern auch langfristig wachsen. Hier sind acht Tipps, die ihnen dabei helfen, das Jahr erfolgreich zu gestalten.

  • KI-Logik in der Unternehmenssoftware

    Für Unternehmen stellt sich nicht mehr die Frage, ob, sondern wie sie Künstliche Intelligenz für ihren Business Case nutzen. Der meist aufwändigen Implementierung von KI-Tools in bestehende Systeme sagt innovative Software jetzt den Kampf an - mit bereits in die Lösung eingebetteter KI. IFS, Anbieterin von Cloud-Business-Software, zeigt, wie Unternehmen anstatt der schwerfälligen Integration von externen Tools ein technologisches Komplettpaket erhalten, das sofort einsatzfähig ist.

  • Schutz von Cloud-Daten

    In der aktuellen Umfrage "2024 State of Cloud Strategy Survey" geben 79 Prozent der Befragten in Unternehmen an, dass sie Multicloud im Einsatz haben oder die Implementierung von Multicloud planen. Die Chancen stehen also gut, dass Multicloud-Strategien weiter zunehmen werden, wenngleich das nicht bedeutet, dass lokale und private Clouds verschwinden.

  • Das Herzstück des Betriebs

    Salt Typhoon mag ein Weckruf sein, aber es ist auch eine Gelegenheit, die Abwehrkräfte zu stärken und Unternehmen gegen aufkommende Bedrohungen zukunftssicher zu machen. Der Angriff hat Schwachstellen im Telekommunikations- und ISP-Sektor aufgedeckt, aber die daraus gezogenen Lehren gehen weit über eine einzelne Branche hinaus. Ob Telekommunikationsunternehmen, Internetdienstanbieter, SaaS-abhängiges Unternehmen oder Multi-Cloud-Unternehmen - Datensicherung muss für alle oberste Priorität haben.

  • Optimale Wissensspeicher

    Graphdatenbanken sind leistungsstarke Werkzeuge, um komplexe Daten-Beziehungen darzustellen und vernetzte Informationen schnell zu analysieren. Doch jeder Datenbanktyp hat spezifische Eigenschaften und eignet sich für andere Anwendungsfälle. Welche Graphdatenbank ist also wann die richtige? Aerospike empfiehlt Unternehmen, ihre Anforderungen unter vier Gesichtspunkten zu prüfen.

  • Zugang zu anfälligen Cloud-Hosts

    Zwischen 2023 und 2024 haben laut einer aktuellen Studie 79 Prozent der Finanzeinrichtungen weltweit mindestens einen Cyberangriff identifiziert (2023: 68 Prozent). Hierzulande berichtet die BaFin, dass 2023 235 Meldungen über schwerwiegende IT-Probleme eingegangen sind. Fünf Prozent davon gehen auf die Kappe von Cyberangreifern.

  • Wachsende SaaS-Bedrohungen

    Die jüngsten Enthüllungen über den massiven Cyberangriff von Salt Typhoon auf globale Telekommunikationsnetzwerke sind eine deutliche Erinnerung an die sich entwickelnde und ausgeklügelte Natur von Cyberbedrohungen. Während die Angreifer sich darauf konzentrierten, Kommunikation abzufangen und sensible Daten zu entwenden, werfen ihre Handlungen ein Schlaglicht auf ein umfassenderes, dringenderes Problem: die Unzulänglichkeit traditioneller Datensicherungsmethoden beim Schutz kritischer Infrastrukturen.

  • Einführung des Zero-Trust-Frameworks

    Die Cyber-Sicherheit entwickelt sich mit rasanter Geschwindigkeit, weshalb eine traditionelle Verteidigung den Anforderungen nicht mehr gerecht wird. Moderne Cyber-Bedrohungen bewegen sich inzwischen mühelos seitlich innerhalb von Netzwerken und nutzen Schwachstellen aus, die mit traditionellen Perimeter-Schutzmaßnahmen nicht vollständig behoben werden können.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen