Sie sind hier: Startseite » Markt » Tipps und Hinweise

Private AI verfolgt einen Plattform-Ansatz


Diese drei Punkte machen Private AI im Unternehmen zu Innovationstreibern
Private AI erlaubt den exklusiven und maßgeschneiderten Einsatz von KI innerhalb eines Unternehmens


Von Joe Baguley, CTO EMEA bei Broadcom

Der Einzug der generativen KI (GenAI) in die breite Öffentlichkeit hat das KI-Wachstum in Unternehmen vergangenes Jahr beschleunigt. Motiviert durch Wettbewerbsdruck und potenzielle Vorteile forcieren Unternehmen und Regierungen ihre KI-Strategie. Einer IDC-Prognose zufolge sollen die Ausgaben für KI von 175,9 Milliarden USD im Jahr 2023 auf 509,1 Milliarden USD im Jahr 2023 ansteigen. Das entspricht einer durchschnittlichen Wachstumsrate von 30,4 Prozent.

Während Unternehmen um Wettbewerbsvorteile kämpfen, werden Tempo und Umfang von KI-Innovationen durch globale Regularien beeinflusst. Unternehmen müssen eine möglichst zügige Einführung von KI mit Überlegungen zu Ethik und Nachhaltigkeit in Einklang bringen. Datenmanagement und Datenschutz gewinnen an Bedeutung, schließlich sind Daten das Herzstück von KI-Systemen. Die große Herausforderung lautet also: Wie können Unternehmen ihr KI-Potenzial ausschöpfen und gleichzeitig ihr wohl kostbarstes Gut, die eigenen und die Daten der Kunden, schützen?

Die Lösung hierfür ist ein neuartiger Architekturansatz, bekannt als Private AI. Private AI erlaubt den exklusiven und maßgeschneiderten Einsatz von KI innerhalb eines Unternehmens. Innerhalb dieser Architekturen behalten Unternehmen die Kontrolle über ihre KI-Modelle und die Daten, mit denen diese gespeist werden.

Private AI verfolgt einen Plattform-Ansatz. Das heißt: Unternehmen bündeln ihre KI-Kompetenzen an einer zentralen Stelle zum Austausch zwischen verschiedenen Anwendungen und Modellen. Mit diesem Prinzip können sie heute einmalig auf eine Plattform setzen und bleiben in Zukunft flexibel. Sie können Modelle austauschen oder ergänzen, wenn sich die geschäftlichen und technologischen Anforderungen sich weiterentwickeln. Dies ist ein Schritt in die richtige Richtung. Drei Vorteile machen Private AI zum Innovationstreiber:

>> Einzigartige Kontrollmöglichkeiten
Wenn Unternehmen zunehmend datengetrieben agieren, ist es umso wichtiger, dass sie zu jedem Zeitpunkt genau wissen, wo ihre Daten eigentlich sind und wie diese verwendet werden. Mit Private AI behalten Unternehmen die Hoheit darüber, wo sie Daten speichern und wie diese mit KI-Modellen interagieren. Denkbar sind On-Premises-Strukturen oder Private Clouds, in einer Edge-Ausführung oder in einem Cloud-Rechenzentrum. In diesen Szenarien behalten IT-Verantwortliche die Kontrolle über ihre Daten und müssen diese nicht auf den proprietären Datenservice eines externen Anbieters migrieren, wenn sie von KI profitieren möchten.

Mit Private AI kommen die KI-Modelle zu den Daten – nicht umgekehrt. Unternehmen behalten die komplette Hoheit über selbst trainierte, lizensierte, offen zugängliche oder weiter trainierte KI-Modelle und haben selbst in der Hand, wie viele Daten diese KI-Modelle bekommen und inwieweit der Zugriff begrenzt wird.

Wenn die IT-Infrastruktur um neue Technologien oder Innovationen ergänzt wird, können IT-Verantwortliche diese in Echtzeit verwalten und wissen so genau, wie hoch die Investitionen sind – und wie rentabel. Zwei weitere Aspekte sind die Kosten und die Performance beim Einsatz von KI-Modellen. In einer Private-AI-basierten Plattform behält das Unternehmen volle Transparenz über die Kosten für Training und Ausführung von KI, kann bestehende Ressourcen und neu angeschaffte Infrastruktur selbst optimal auslasten und behält die Hoheit bei der Priorisierung von KI-Anwendungen unterschiedlicher Teams und Geschäftsbereiche.

Im Zuge von KI-Innovationen werden Daten oft über Ländergrenzen transferiert und gespeichert, meist unter der Regie eines Hyperscalers mit Sitz in den USA. Private AI eröffnet den Zugang zu KI-Innovationen vor Ort und unterstützt so die regionale Wirtschaft. So kann beispielsweise ein deutsches Krankenhaus, das seine Krebsforschung mit einem KI-Modell beschleunigt, Daten nutzen, die lokal in einem deutschen Rechenzentrum oder einer privaten Cloud gespeichert sind. Diese Aktivitäten stärken die lokale Wirtschaft – durch Steuerzahlungen, Einhaltung lokaler Regularien oder das Einstellen und Ausbilden von Experten vor Ort. So ergeben sich aus dem Einsatz von Private AI neue Chancen – nicht nur für Unternehmen, sondern für die Gemeinschaft als Ganzes.

Ein weiteres wichtiges Thema ist die Sicherheit. Private-AI-Modelle können mit unternehmenseigenen Daten dauerhaft trainiert oder mittels RAG (Retrieval Augmented Generation) zur Laufzeit angereichert werden. Das Unternehmen behält jedoch die Hoheit über diese Daten. So sinkt das Risiko von unautorisiertem Zugriff oder Datenlecks. Von besonderer Bedeutung ist dies in Branchen wie der Industrie, dem Bausektor, Finanzen, Medien sowie in öffentlichen und rechtlichen Dienstleistungen – überall dort, wo Machine-Learning-Modelle mit differenzierenden, sensiblen oder auch kreativen Daten trainiert werden. Private-AI-Modelle, die mit unternehmenseigenen Daten trainiert wurden, gewährleisten Rechtssicherheit und Zweckmäßigkeit.

2. Überblick über die Rechtsprechung
Die aktuelle Gesetzeslage in Europa beeinflusst das Ausmaß und das Tempo der KI-Innovation. Kürzlich kündigte Meta an, seine KI-Einführung in Europa aufgrund der verschärften Vorschriften einzuschränken.

Als Mittel gegen Innovationshemmnisse fördert Private AI die digitale Transformation von Unternehmen im Rahmen des bestehenden gesetzlichen Rahmens – zugunsten der regionalen Wirtschaft und des Landes. Die Gesetzgebung rund um KI ist so neu wie die Technologie selbst. Entsprechend sind die künftigen Auswirkungen der Regularien schwer abzuschätzen. Infolgedessen sollten KI-Innovationen auf Unternehmensebene offen und interoperabel gestaltet sein. Die Rückverfolgbarkeit der Daten in Private-AI-Modellen hilft Unternehmen, alle Anforderungen an Datenhoheit zu erfüllen. So bleibt die neue Technologie auch angesichts neuer Regularien zukunftsfähig und räumt Hindernisse aus dem Weg, KI für den technologischen Wandel zu nutzen.

3. Zukunftssichere IT-Infrastruktur
Unternehmen müssen nicht die gleichen Fehler machen wie beim initialen Hype um die Public Cloud. Die KI-Landschaft entwickelt sich stetig; neben bekannten Lösungsanbietern treten immer wieder neue Player in den Markt ein. Durch den Einsatz von Private AI bleibt die betriebliche Infrastruktur auch in der nächsten Ausbauphase formbar und flexibel. So vermeiden es Unternehmen, sich an einen einzelnen Anbieter zu binden, und sichern auch die künftige Kompatibilität mit entstehenden Technologien und neuen KI-Anbietern. Schließlich will niemand in drei Jahren ein weiteres Altsystem pflegen müssen. Die eigene KI-Strategie sollte ebenso agil sein wie die KI selbst, um Modelle und Dienste zu ersetzen, sobald sie nicht mehr nützlich oder rechtssicher sind.

In Sachen KI gibt es keinen Grund, Kompromisse bei der Auswahl, beim Datenschutz oder der Kontrolle zu diskutieren. Private AI legt alle diese drei Hebel in die Hände der Unternehmen – für eine schnelle und zukunftssichere KI-Einführung. Bei nachhaltiger Innovation geht es nicht um Datensicherheit allein. Es gilt, KI-Innovation auf strategische Weise mit Compliance und Datenschutz zu vereinen. So können Unternehmen auf verantwortungsvolle Weise das Potenzial von KI ausschöpfen und eine sichere, innovative Zukunft einläuten. (Broadcom: ra)

eingetragen: 29.10.24
Newsletterlauf: 13.01.25

Broadcom: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Kostenloser PMK-Verlags-Newsletter
Ihr PMK-Verlags-Newsletter hier >>>>>>


Meldungen: Tipps und Hinweise

  • Optimale Wissensspeicher

    Graphdatenbanken sind leistungsstarke Werkzeuge, um komplexe Daten-Beziehungen darzustellen und vernetzte Informationen schnell zu analysieren. Doch jeder Datenbanktyp hat spezifische Eigenschaften und eignet sich für andere Anwendungsfälle. Welche Graphdatenbank ist also wann die richtige? Aerospike empfiehlt Unternehmen, ihre Anforderungen unter vier Gesichtspunkten zu prüfen.

  • Zugang zu anfälligen Cloud-Hosts

    Zwischen 2023 und 2024 haben laut einer aktuellen Studie 79 Prozent der Finanzeinrichtungen weltweit mindestens einen Cyberangriff identifiziert (2023: 68 Prozent). Hierzulande berichtet die BaFin, dass 2023 235 Meldungen über schwerwiegende IT-Probleme eingegangen sind. Fünf Prozent davon gehen auf die Kappe von Cyberangreifern.

  • Wachsende SaaS-Bedrohungen

    Die jüngsten Enthüllungen über den massiven Cyberangriff von Salt Typhoon auf globale Telekommunikationsnetzwerke sind eine deutliche Erinnerung an die sich entwickelnde und ausgeklügelte Natur von Cyberbedrohungen. Während die Angreifer sich darauf konzentrierten, Kommunikation abzufangen und sensible Daten zu entwenden, werfen ihre Handlungen ein Schlaglicht auf ein umfassenderes, dringenderes Problem: die Unzulänglichkeit traditioneller Datensicherungsmethoden beim Schutz kritischer Infrastrukturen.

  • Einführung des Zero-Trust-Frameworks

    Die Cyber-Sicherheit entwickelt sich mit rasanter Geschwindigkeit, weshalb eine traditionelle Verteidigung den Anforderungen nicht mehr gerecht wird. Moderne Cyber-Bedrohungen bewegen sich inzwischen mühelos seitlich innerhalb von Netzwerken und nutzen Schwachstellen aus, die mit traditionellen Perimeter-Schutzmaßnahmen nicht vollständig behoben werden können.

  • Leitfaden für eine erfolgreiche DRaaS-Auswahl

    Investitionen in DRaaS (Disaster-Recovery-as-a-Service) sind sinnvoll und zukunftsweisend, denn DRaaS hilft den Unternehmen, ihre IT-Systeme und Daten im Fall eines Datenverlusts schnell wiederherzustellen. Allerdings sollte man im Vorfeld eine gründliche Marktanalyse durchführen und sich über die Funktionsweise und Kosten der verschiedenen Lösungen informieren.

  • ERP-Software muss ein Teamplayer sein

    So wichtig ERP-Systeme auch sind, bei der Auswahl der richtigen Lösung und Anbieter gibt es für Unternehmen eine Reihe von Aspekten zu beachten - schließlich bringen nur passgenaue und ausgereifte Systeme auch die erwünschten Vorteile. IFS erklärt, worauf es bei der Suche ankommt.

  • Grundlage für zukunftssichere Rechenzentren

    Rechenzentren sind das Rückgrat unserer digitalen Welt. Betreiber dieser Infrastrukturen stehen dabei vor immensen Herausforderungen: Sie müssen nicht nur den ununterbrochenen Betrieb und höchste Sicherheitsstandards sicherstellen, sondern auch strengere Umwelt- und Effizienzkriterien einhalten.

  • Cloud-basierte Tests

    Mit der Digitalisierung steigt das Datenvolumen und der Energieverbrauch. Daher stehen Unternehmen jetzt vor der Herausforderung, ihre IT nachhaltiger zu gestalten. Auch das Qualitätsmanagement kann dazu einen wertvollen Beitrag leisten, indem es den CO2-Fußabdruck von Software verringert.

  • Was ist der richtige Cloud-Speicher für KMU?

    Verschiedene Arten von Unternehmen haben unterschiedliche IT-Anforderungen. So haben kleine und mittelständische Unternehmen natürlich nicht die gleichen Anforderungen wie große internationale Unternehmen.

  • ITAM on-premises versus Software-as-a-Service

    IT Asset Management (ITAM) schafft die Basis für Cybersecurity, Kostenkontrolle und effizientes IT-Management. Doch vor allem im Mittelstand fehlen häufig Manpower und Expertise, eine ITAM-Lösung inhouse zu betreiben. Software-as-a-Service-Angebote versprechen Abhilfe.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen